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EXECUTIVE SUMMARY 
 

Cycling has been more and more prevalent among citizens especially in bike friendly cities 

where planners and policy makers have been promoting non-motorized travel mode. Compared 

to driving, cycling is healthier and is able to reduce energy consumption. Therefore, it is essential 

to analyze cycling behavior to better understand the needs of bicyclists. Since cycling behavior 

during different time periods can be distinctive, it is critical to discover the differences of cycling 

behavior in each time period.  

 

To analyze cycling behavior, data including bicycle volume on each road segment, road 

characteristics, time of day, day of week are quite indispensable. The methods for data collection 

are diverse. In the past, traditional manual count data and travel survey data were the most 

commonly used ones for data collection. However, crowdsourcing is becoming more popular, 

since crowdsourced data can be cost effective and time saving compared to the other two data 

collection methods. In addition, traditional manual count data and travel survey data cannot 

provide spatial and temporal information which is critical for relevant research studies. Although 

these two data collection methods have been used for most of the previous research efforts, 

crowdsourced data has been selected by researchers to conduct relevant studies recently because 

of its ability to address the data gap for decision making and policy development.   

 

This research concentrates on the analysis of cycling behavior utilizing crowdsourced bicycle 

data collected from Strava in the City of Charlotte. The cycling behavior of Strava users in the 

City of Charlotte during different time periods is compared. From the link-based cycling 

behavior prospective, several discrete choice models have been developed to model the 

preference of roadway segments along their cycling routes during different time periods. Factors 

including road characteristics, bike facilities, day of week etc. have been carefully examined to 

gain a better understanding of the variables that have significant impacts on link-based cycling 

behavior. From the route-based cycling behavior prospective, a method is provided to guide 

researchers to analyze cycling route choice including a choice set generation method and a Path 

Size Logit model for future route choice analysis.  
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Chapter 1.  Introduction 

1.1 Problem Statement 

To obtain better and healthier lives, citizens are trying to spend more time on outdoor 

activities. And for traveling, more people prefer to select cycling for both commuting and 

recreational trips especially those with short distances. Cycling, as a healthier and greener non-

motorized travel mode, has been encouraged by city planners and policymakers to help reduce 

energy consumption, decrease traffic emissions, and improve public health. However, there are 

several concerns for people to choose cycling over other travel modes in terms of safety issues, 

and environmental issues, etc. Compared with other road users, cyclists can be more vulnerable. 

Therefore, it is essential to analyze the impacts of different factors on cycling behavior, so that 

recommendations can be made to provide a better cycling environment.  

One of the most useful ways to improve cycling condition is to construct bicycle facilities 

which can provide a safer and more comfortable cycling environment for the potential cyclists. 

The convenience brought by leveraging the well-constructed bicycle facilities may increase the 

bicycle level of service.  

According to the Charlotte Department of Transportation (CDOT) Bicycle Program 

developed in 2017 (City of Charlotte Department of Transportation, 2017), the City of Charlotte 

has been making great efforts to become a bicycle friendly city for the past fifteen years. To 

promote cycling, a comprehensive bike plan has been implemented and improvements have been 

made to the policies. Since the first mile of bike lanes was constructed in 2001, the bike network 

in Charlotte has been expanding. There are more than 90 miles of bike lanes, 40 miles of 

greenways and off-street paths, and 55 miles of signed bike routes in the City of Charlotte (City 

of Charlotte Department of Transportation, 2017). Although the city bike network has been 

growing rapidly, there are still 62% of the residents in Charlotte who do not think biking is easy 

for them according to a survey conducted by CDOT (City of Charlotte Department of 

Transportation, 2017). However, more than half of the citizens would like to select cycling as 

their travel modes more than they currently do. Therefore, it is not difficult to infer that the 

cycling condition in the City of Charlotte still needs to be improved. And it can be expected that, 

more people will select cycling after the improvement of cycling environment.  

To understand how to improve cycling condition and promote cycling among potential 

cyclists, factors need to be analyzed to examine the significant impacts on cycling behavior for 

both link-based route choice and path-based route choice. Therefore, data including bicycle 

volume on each road segment, road characteristics, sociodemographic information, temporal 

characteristics, etc. are essential for analyzing link-based route choice, while data including 

cycling trajectories and cycling route related information (distance, road characteristics, bike 

facilities, etc.) are necessary for analyzing path-based route choice.  

The data collection methods for these research studies usually include three most 

commonly used ones which are traditional manual count data collected from the manual count 

machines, the travel surveys, and the crowdsourced data from the third party. Previously, most of 

the research efforts were conducted utilizing the first two data collection methods. But these two 
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methods can be expensive and time-consuming. The crowdsourced data, on the other hand, are 

timesaving and cost effective. In addition, this kind of data can provide spatial and temporal 

information that data collected using traditional methods cannot provide. Therefore, 

crowdsourced data have been widely used by researchers and many public agencies. Recently, 

crowdsourced data collected from smartphone applications (Strava etc.) have been prevalent 

among researchers since it has increased the availability of data collection and provided a 

feasible way to bridge the data gap for relevant research studies and decision making.  

Crowdsourcing is an advanced data collection method. It has the advantages for 

researchers and practitioners to collect data from a large range of people in a time-saving and 

cost-efficient way. Usually, crowdsourcing involves crowd itself through an internet-based 

platform during an outsourcing procedure. It obtains useful information from the interested 

group and is utilized by scholars and planners to solve the relevant problems which can benefit 

the interested group back. The thought of crowdsourcing was first brought by Howe in his article 

“The rise of crowdsourcing” back in 2006 (Howe, 2006). With the development of 

crowdsourcing, researchers have utilized crowdsourced data to conduct research studies for 

different aspects including model development, travel behavior analysis, traffic demand 

estimation, bicycle facility evaluation, and road safety analysis.  

With the development of GPS enabled smartphones, it is more convenient to collect 

crowdsourced data from smartphone applications. The first smartphone application for cycling 

data collection is CycleTracks developed by San Francisco County Transportation Authority in 

2009 (San Francisco County Transportation Authority, 2013). Later, based on the first 

smartphone application, several different applications including Strava, Cycle Atlanta, and 

ORcycle etc. have been developed to conduct studies for various locations and research aspects. 

Obviously, the data provided by these applications can be distinctive. Some offer original 

cycling trajectories that need to be matched to the map, while others provide the aggregated data 

that have been preprocessed by specialists.  

Based on the crowdsourced data collected from the smartphone applications, multiple 

models can be developed which include ordered probit models, ordered logit models, partial 

proportional odds models, path size logit models, expanded path size logit models, recursive 

models, and C-logit models. These models have been adopted for bicycle travel related research 

studies in terms of route choice behavior analysis, bicycle volume estimation and forecasting, 

bicyclist injury risk and safety analysis, air pollution exposure assessment, cycling comfort and 

level of service evaluation, etc. To develop these models, information besides crowdsourced data 

is still needed which contains road characteristics, sociodemographic factors, geometry features, 

air pollution measures, cyclist involved crash data, and temporal attributes, etc.  

This research is intended to systematically analyze the cycling activities during different 

time periods for both link-based cyclist route choice and path-based cyclist route choice. 

Crowdsourced data utilized in this research are collected from Strava smartphone application 

which contain the Strava user counts on each road segment in the whole Charlotte network and 

the OD matrix for Strava users. To complete the link-based cyclist route choice behavior 

analysis, factors including road geometry, demographic characteristics, bicycle facilities, road 

features, and temporal data, etc. are carefully examined to develop several discrete choice 

models for different time periods. Data processing and combination procedures can be conducted 
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with ArcGIS and SAS. To provide a method to guide researchers to analyze path-based cyclist 

route choice, a choice set generation method has been selected and a Path Size Logit model for 

future route choice analysis has been presented. 

1.2 Objectives 

The objective of this report is to analyze the cycling behavior during different time 

periods in the City of Charlotte using crowdsourced bicycle data collected from Strava 

smartphone application, and compare different cycling behavior to provide specific 

recommendations accordingly on what can be done to help increase bicycle volume and build a 

better environment for bicycle riding. Route choice models will be developed for each time 

period, and the differences of each model will be identified which might not be explicitly 

accounted for in previous research. The proposed work in this report is to fulfill the following 

objectives: 

1. To review and synthesize past experiences in cycling behavior analysis; 

2. To compile the data needed for this project from all the available sources 

including Strava smartphone application data, roadway characteristics data, and other potential 

useful data for the follow-up work; 

3. To analyze the crowdsourced bicycle data and conduct descriptive analysis; 

4. To develop link-based cyclist route choice models using multiple discrete choice 

models; 

5. To identify and compare the differences of cycling behavior between various time 

period; 

6. To provide a choice set generation method for cyclist route choice behavior 

analysis; 

7. To present the structure of a Path Size Logit model showing the method to 

analyze cyclist route choice for potential future studies. 

1.3 Expected Contributions 

To better understand the factors affecting bicyclist route choice behavior during different 

time periods, models need to be developed for both link-based route choice analysis and path-

based route choice analysis. Along that line, the expected contributions of this research can be 

summarized as follows: 

1. Present a systematic method for existing research efforts based on crowdsourced 

bicycle data; 

2. Develop several discrete choice models to analyze link-based cyclist route choice 

behavior and identify the best model structure for this case study, examine and compare the 

impact factors for different time periods; 
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3. Provide a practical method to generate choice set for preparation of path-based 

route choice modeling. 

4. Present the Path Size Logit model to give a method of analyzing path-based route 

choice for potential future studies. 

1.4 Report Overview 

The remainder of this report is organized as follows: Chapter 2 presents a comprehensive 

review of the state-of-the-art and state-of-the-practice on the link-based and path-based route 

choice behavior analysis using both traditional data collection methods and crowdsourced 

bicycle data. Chapter 3 discusses the bicycle count data and the OD matrix data collected from 

Strava application and other relevant supporting data. Chapter 4 conducts a descriptive analysis 

based on the data collected in Chapter 3. Chapter 5 develops several discrete choice models for 

analyzing link-based cyclist route choice behavior in City of Charlotte during different time 

periods. Impact factors have been compared across different time periods. Chapter 6 presents the 

structure of a Path Size Logit model showing the method to analyze cyclist route choice for 

potential future studies. Finally, Chapter 7 concludes this report with a summary and a discussion 

of the directions for future research.   
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Chapter 2.  Literature Review 

2.1 Introduction 

Cycling behavior has been studied for decades to provide guidance to policy makers and 

planners for active transportation development and management, with the support of traditional 

data collection methods such as travel surveys and manual counts. Nowadays, the information 

and communication technologies have been developed, which leads us to a new era of big data.  

Numerous sources of novel data, including crowdsourced data collected from the smartphone 

have emerged and been utilized for the transportation research especially in travel behavior 

analysis area. The use of the innovative crowdsourcing data collection method, compared with 

the previous traditional data collection method, shows a lot of unique features and advantages. 

Thus, many researchers in relative research fields have been attracted to apply the crowdsourced 

data to their travel behavior research which has brought a certain amount of progress to date. 

And this is only the beginning of the benefit from crowdsourcing, this kind of data collection 

method still have great potential to be exploited for the further advanced transportation research 

studies.  

This chapter provides a summary of the review of previous research efforts regarding the 

crowdsourcing data collection method and the potential use of the crowdsourced data on relative 

transportation research studies, especially route choice behavior analysis. The comprehensive 

review will greatly help in gaining a clearer understanding of the methods of modeling cyclist 

route choice behavior based on crowdsourced bicycle data for future research studies.  

The remainder of this chapter is structured as follows. Section 2.2 gives a brief 

introduction to the existing data collection methods including open data, big data and stated 

preference, revealed preference travel surveys and other traditional transportation survey 

methods. Section 2.3 summarizes and introduces the smartphone crowdsourcing applications and 

the potential use of crowdsourced bicycle data for relevant research studies. Section 2.4 reviews 

the link-based cyclist route choice behavior analysis methods based on both traditional data 

collection methods and crowdsourced bicycle data. Section 2.5 provides a detailed description of 

the choice set generation methods prepared for path-based route choice behavior analysis. 

Section 2.6 summarizes the previous research in terms of the path-based route choice analysis 

methods. Finally, section 2.7 concludes the whole chapter.  

2.2 Data Collection Methods 

2.2.1 Crowdsourcing 

Crowdsourcing is an innovative method which introduce new developments for the process 

of data collection. With the evolving of crowdsourcing, the definition of crowdsourcing has 

changed over the years. It was first brought up by Howe in 2006 in his article named “The 

Rise of Crowdsourcing”. According to his statement, crowdsourcing is defined as follow: 

“Crowdsourcing is the act of taking a job traditionally performed by a designated agent 

(usually an employee) and outsourcing it to an undefined, generally large group of people in 

the form of an open call.” (Howe, 2006) 
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Based on this new concept, lots of researchers who are interested in this kind of data 

collection method provide their own interpretations of crowdsourcing (Estellés-Arolas and 

González-Ladrón-de-Guevara, 2012). Usually, the definitions of crowdsourcing contain three 

main features that represent this data collection method including the crowd that provides 

critical information, the outsourcing procedure that spread out the data, and the internet-

based platform that enables the accomplishment of crowdsourcing (Saxton, 2013). Some 

definitions of crowdsourcing are listed below: 

(1) Crowdsourcing is an online production model that help solve the problem in recent years 

(Brabham, 2008) 

(2) Crowdsourcing is an integration of the users or consumers that creates value in internal 

processes (Kleemann et al., 2008). 

(3) Crowdsourcing is a new online production model that collaborates the networked people 

to solve the problem and complete a task (Vukovic, 2009). 

(4) Crowdsourcing is an outsourcing procedure of a task or job that invites a larger group of 

innovators to provide a solution (Liu and Porter, 2010).  

(5) Crowdsourcing is a procedure that motivates individuals to participate into the tasks 

voluntarily and allow both researchers and the crowd to find the solutions for the tasks 

(Schenk and Kishore, 2011). 

(6) Crowdsourcing uses a passionate crowd or loosely bound public to solve the problems 

(Wexler, 2011). 

2.2.2 Open Data 

Open data is a kind of public or private dataset that anyone can get access to freely through 

the internet with no restriction or cost. Usually, the open data are released by local 

government or institutions for relevant research studies.  

There are certain requirements that open data should meet. One of the requirements is to 

ensure the free usage of data and the ability to reuse and redistribute data. The definition of 

“open” indicates that this kind of data is not restricted to a specific field or by any individual. 

Thus, according to Attard et al. (2015), the open data that are already published should be 

platform independent, information reusable, machine readable, and public available without 

any restrictions. To conclude, the open data means the type of data that are available through 

internet without any extra charges or limitations (Reiche and Höfig, 2013). Under this 

circumstance, open data are seen as the critical motivator of open government (Kučera et al., 

2013). 

2.2.3 Big Data 

Big data are prevalent for multiple aspects of research studies recently which may require 

advanced data processing, essential data cleaning procedure, data integration with other 

supporting datasets to provide critical information for decision making.  

With the development of technology, the importance of big data has been revealed. Generally 

speaking, big data refer to datasets that are too large to perceive, difficult to acquire, complex 
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to manage, and hard to processed by the traditional application software within a reasonable 

amount of time. Different definitions for big data are provided from various points of view 

by researchers, technological and scientific companies, data analysts, and technical 

specialists.  

Apache Hadoop defines big data as the large datasets that cannot be extracted, managed, and 

processed by normal computers within an acceptable scope in 2010 (Chen et al., 2014). 

Similarly, an IDC report defines big data as a new generation of technologies that are 

designed to obtain the information from large volumes of data with wide diversities through 

an efficient data extraction and analysis procedure (Gantz and Reinsel, 2011). Thus, four 

main features of the big data can be identified which are large in volume, great in variety, 

fast in variation, and high in value. 

2.2.4 Traditional Survey Methods 

There are many traditional survey methods that have been utilized for data collection. Stated 

preference survey (i.e., SP survey) and revealed preference survey (i.e., RP survey) are the 

two kinds of survey methods that are commonly used by researchers. The SP survey designs 

the investigation based on assumed values, since the content of the questions is intentionally 

made up and has not taken place. This feature gives SP survey the advantage of flexibility. 

On the contrary, RP survey is designed to acquire results of choices from the respondents 

under certain selection conditions. Unlike SP survey, the content of investigation in RP 

survey has already taken place. In other words, the results of RP survey are the reflection of 

the actual choice behavior (Guan, 2004).  

Other survey methods (both paper-based and web-based) that have been used massively 

include traditional household survey (Kagerbauer et al., 2015), workplace survey, 

longitudinal and panel survey, transit on-board ridership surveys, commercial vehicle (truck) 

surveys and external station survey. 

2.3 Smartphone Crowdsourcing Applications and Their Potential Use 

As stated in Section 2.2.1, there are numerous definitions of crowdsourcing. This section 

will concentrate on the smartphone crowdsourcing applications that are related to cycling and 

introduce and summarize the potential use of this kind of data. 

The first smartphone application designed for cycling data collection is CycleTracks 

which was developed by the San Francisco County Transportation Authority (SFCTA) in 2009 

(SFCTA, 2013). The GPS-enabled smartphones were utilized to collect the cycling trajectory. In 

addition, demographic information and trip purposes were also collected from the users.  

Based on the first smartphone application, AggieTrack was developed by Texas A&M 

University for collecting the travel information from the users within the university area (Hudson 

et al., 2012). Data including travel mode, trip purposes, classification (student, faculty or staff), 

etc. were collected after the generation of each trip. 

In addition, Cycle Atlanta was also developed based on the CycleTracks smartphone 

application (Misra et al., 2014). Different from the previous applications, Cycle Atlanta provided 
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several additional features with a different user interface. Data other than the cycling trip related 

information were collected such as issues encountered by cyclists during their cycling trips, 

bicycle parking, and the locations of certain infrastructures. Similarly, demographic information 

is collected. 

Based on Cycle Atlanta, RenoTracks was developed during 2013 (RenoTracks 2013). 

Different from Cycle Atlanta, RenoTracks added the “CO2 Saved” counter calculating the carbon 

dioxide emission reduction when selecting bicycle as the travel mode instead of automobile.  

Strava is another smartphone application that has been widely used by numerous cyclists. 

Speed, distance, and trip time are displayed on the personal record dashboard. Graphical 

representations of the route profile and plan overview are also provided. The unique function for 

Strava enables the users to compete with other cyclists who bike on the same segment by 

tracking performance of the Strava users. This functionality helps Strava become more social and 

attracts lots of cyclists. Other popular smartphone applications that are used recently include 

Mon RésoVélo (Jackson et al., 2014), MapMyRide, MyTracks, and ORcycle (Broach et al., 

2012). 

These smartphone crowdsourcing applications offer massive data for researchers to 

conduct various research studies in terms of link-based and path-based cyclist route choice 

behavior analysis which will be reviewed in detail in the following sections. In addition, this 

kind of crowdsourced data can be utilized for other research areas as well including cycling 

safety, cycling activities associated with air pollution exposure, bicycle level of service, and 

health impact assessment, etc.  

Raihan et al. (2017) investigated the impact of roadway characteristics and bicycle 

facilities on bicycle safety. In order to examine the association between bicycle crash frequencies 

and the impact factors (roadway characteristics and bicycle facilities), Crash Modification 

Factors (CMFs) were developed utilizing a robust cross-sectional analysis. This research focused 

on the urban facilities where 98 percent of the bicycle crashes occurred. The CMFs developed in 

this research provided the quantitative results of the impact of roadway characteristics on bicycle 

safety which was not studied by lots of researchers. In addition, bicycle exposure was considered 

based on the cycling data obtained from Strava application.  

Sun and Mobasheri (2017) conducted a study on the air pollution exposure for both 

commuting and non-commuting trips. Spatial patterns of non-commuting cycling trips were 

identified. Cycling behavior was analyzed based on the number of non-commuting trips for 

different environmental characteristics. Data utilized in this research study were collected from 

Strava Metro. According to the Strava nodes data, compared with commuting trips, non-

commuting trips tend to be occurred in the outskirts of the city. Cyclists biking for non-

commuting trips have a higher likelihood to be exposed to low levels of air pollution while 

comparing to the commuting trips. In addition, the method adopted in this research study was 

examined to have good fitness for estimating the number of non-commuting trips. 

Strava data were utilized by engineers and planners in Foresite Group (2015) to 

investigate the representativeness of the crowdsourced data. The correlation between the Bicycle 

Level-of-Service (BLOS) grades were evaluated with traditional methods and the crowdsourced 
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data. Results revealed that Strava data may not have the ability to represent all the cyclists, and 

the majority of the cycling trips are recreational activities.  

To identify the location of cycling activities especially recreational trips, Griffin and Jiao 

(2015) analyzed the data collected from Travis County, Texas. Bicycle volumes were estimated 

based on the residential and employment density, the land use categories, bicycle infrastructures 

and terrain. Locations that were selected for recreational cycling trips were identified. The 

method developed in this research study provided guidance for health impact analysis studies. 

2.4 Link-based Cyclist Route Choice Behavior Analysis 

Many researchers have conducted their studies by using crowdsourced data. GPS enabled 

smartphones to provide researchers new opportunities to collect data from a broader group of 

people and use them to conduct the cyclists’ route choice analysis. The existing use of 

crowdsourced data for link-based cyclist route choice behavior analysis is presented as follows. 

Moore (2015) conducted a study to analyze the impact of various factors on cycling route 

choice based on the crowdsourced bicycle data collected from Strava application. An ordinal 

logistic regression model was developed to examine the effect of impact factors on the cyclists’ 

route choice. GIS was applied to conduct a qualitative analysis in order to investigate the specific 

areas and facilities to discover their differences from other facilities. Results revealed that the 

selection of a road segment is highly associated with the road characteristics and the land use. 

Griffin and Jiao (2016) collected data from both CycleTracks smartphone application and 

the Strava fitness application to conduct a data comparison between crowdsourced bicycle data 

and the manual count bicycle data. Five specific locations were selected in the downtown Austin, 

Texas. All the data were compiled and compared in GIS for these five locations.  

To explore the relationship between manual count data collected in Victoria, British 

Columbia, Canada and crowdsourced bicycle data from Strava application, a generalized linear 

model was developed by Jestico et al. (2016). The bicycle volumes were categorized into several 

levels, and a regression model was developed for the prediction of bicycle volume level. The 

maps that illustrate the distribution of bicycle volumes were created. Results revealed that the 

bicycle trips recorded by Strava are similar to the commuting trips in the urban areas of the mid-

size North American cities.  

A data comparison was conducted by Watkins et al. (2016) to find out the differences 

between Cycle Atlanta and Strava data in terms of the sociodemographic information, total 

cycling trips on each road segment, and the cycling trips during each time of day. In addition, the 

manual count data were compared to the crowdsourced bicycle data from Cycle Atlanta in both 

AM and PM peak hours. The percentage of the manual count data collected by Cycle Atlanta 

was calculated based on data selected from 78 intersections. The data comparison results 

indicated that noticeable differences exist in the populations of the crowdsourced data. Thus, the 

bicycle data collected from smartphone applications should be carefully utilized before 

conducting relevant research studies.  

Hochmair et al. (2017) utilized the crowdsourced bicycle data collected from Strava 

application in the Miami-Dade County area to analyze the impact of demographic information, 
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network characteristics (especially bicycle facilities), and place specific features on bicycle 

ridership. A series of linear regression models were developed to predict the bicycle kilometers 

traveled for both commuting and non-commuting trips, and trips occurred on both weekdays and 

weekends. Eigenvector spatial filtering was adopted to avoid bias and model spatial 

autocorrelation. Results showed that Strava data performs well for the analysis of the impact of 

explanatory variables on bicycle volumes for commuting and non-commuting trips and during 

different days of week. In addition, Strava data revealed the broad coverage of spatial and 

temporal information and can be utilized as a critical supplement to bicycle volume estimation in 

large areas.  

Route choice analysis was conducted by LaMondia and Watkins (2017) based on the 

crowdsourced bicycle data collected from Strava, Cycle Dixie and Cycle Atlanta. The impact 

factors were identified by modeling the bicycle facility preferences. In addition, cyclists’ route 

segment choice and route choice were analyzed. Results revealed that sociodemographic 

information, road characteristics, and land use have a significant impact on the route segment 

choice.  

Proulx and Pozdnukhov (2017) developed a novel method with geographically weighted 

data fusion for bicycle volume estimation utilizing crowdsourced data from Strava smartphone 

application and Bay Area Bikeshare data. It can be found that the method of Geographically 

Weighted Data Fusion can improve predictive accuracy for link-level bicycle volume estimation. 

Zimmermann et al. (2017) analyzed the link-based cyclist route choice based on the GPS 

data in the network with more than 40,000 road segments in the City of Eugene. A recursive 

logit (RL) model following the research conducted by Fosgerau et al. (2013) was developed 

which did not require the choice set generation procedure. The results showed the advantages of 

this method in terms of the link flow prediction and accessibility measures. Compared to the 

path-based route choice models, this method is better in computational time and may avoid 

paradoxical results which is consistent with Nassir et al. (2014).  

To conclude, a summary of the link-based route choice analysis studies is provided below 

in TABLE 2.1. 

Table 2.1  Summary of Link-based Route Choice Analysis 

Year Author Data Methods Results 

2015 Moore 
Data from Strava 

application 

Ordinal 

logistic 

regression 

model 

Roadway characteristics and 

surrounding land-use have a 

significant impact on whether or 

not a particular street segment 

would be used. 

2016 
Griffin and 

Jiao 

Data from 

CycleTracks, 

Strava 

application, and 

traffic counts 

Ordinary least 

squares 

regression 

Crowdsourced data are appropriate 

for bicycle volume evaluation.  

2016 Jestico et al. 
Data from Strava 

and manual 

Generalized 

linear model 

In mid-size North American cities 

within urban areas, the routes 
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counting data recorded in crowdsourced fitness 

application tend to be similar with 

those of the commuter cyclists. 

2016 
Watkins et 

al. 

Data from Cycle 

Atlanta, Strava, 

and actual cyclist 

trips 

Data 

comparison 

The smartphone application data 

should be carefully used 

considering the likely bias. 

2017 
Hochmair et 

al. 

Data from Strava 

application 

Linear 

regression 

models 

Strava data can be used to 

examine the impact of explanatory 

variables on estimated bicycle 

volume. 

2017 
LaMondia 

and Watkins 

Data collected 

using the Strava, 

Cycle Dixie and 

Cycle Atlanta 

Route 

suitability 

score and 

preference 

models 

Demographics, roadway 

characteristics and surrounding 

land-use have a significant impact 

on route choice. 

2017 
Proulx and 

Pozdnukhov 

Crowdsourced 

data from Strava 

and usage data 

from Bay Area 

Bikeshare 

Geographically 

Weighted Data 

Fusion 

The method of Geographically 

Weighted Data Fusion can 

improve predictive accuracy for 

link-level bicycle volume 

estimation.  

2017 
Zimmermann 

et al. 

GPS observations 

in the city of 

Eugene 

Link-based 

bike route 

choice model 

(recursive logit 

model) 

Cyclists are sensitive to distance, 

traffic volume, slope, crossings 

and the presence of bike facilities. 

 

2.5 Choice Set Generation Methods 

In a path-based route choice modeling procedure, there are usually two steps. First, 

possible alternative routes within the roadway network are needed to be generated to comprise 

the choice set. After that, the probability of a certain route being chosen from the generated 

choice set is calculated based on the route choice model. Thus, this section will introduce various 

methods to accomplish the first step of the route choice modeling which is choice set generation.  

In a bicycle network, there are numerous alternative routes for bicyclists to choose either 

for their commute trips or their recreational trips. Since the purpose of this project is to analyze 

bicyclists’ route choice behavior, the preparation work (choice set generation) is essential. This 

task of the project is to ideally identify all the biking routes that any traveler might consider. In 

particular, algorithmic rules for generating the observed biking routes to avoid biases in the 

model estimation procedure is critical in this task. 

There are many previous methods for the design of a path generation algorithm. One of 

the well-known methods is called the K-shortest Path algorithm which generates the first “k” 

shortest paths for a given origin-destination pair in a roadway network. There are two popular 

heuristics which are link penalty and link elimination methods (De La Barra et al., 1993). 
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According to these two heuristics, the link penalty method gradually increases the impedance of 

all links on the shortest path, while the link elimination method removes the links on the shortest 

paths in sequence to generate new routes.  

The labeling approach is also a choice set generation method. It allows the availability for 

multiple link attributes including travel time, distance, cost, etc. that produce alternative routes 

(Ben-Akiva et al., 1984). In this method, the routes may be labeled based on the criteria such as 

“minimize time”, “minimize distance”, “minimize cost”, “maximize the use of expressways”, 

etc. 

In addition, simulation methods produce alternative feasible paths by drawing 

impedances from different probability distributions. The distribution type (for example, 

Gaussian, Gumbel, Poisson), distribution parameters, number of draws and the seed of the 

pseudo-random number generator are design variables. (Bekhor et al., 2006) 

Many researchers have applied different methods of choice set generation to get ready for 

the route choice analysis. The existing choice set generation methods that include but are not 

limited to the ones introduced above are presented as follows.  

Bekhor et al (2006) utilized the simulation methods to produce alternative paths which 

form the choice set. A Gaussian distribution with a mean and standard deviation calculated from 

travel times was used. (The choice of the Gaussian distribution was primarily for computational 

convenience, rather than for any theoretical reason.) Up to 48 draws were simulated for each 

observation, as this was estimated to take roughly the same computational time as the link 

elimination and link penalty algorithms. 

The choice set generation approach used in the research conducted by Hess et al. (2015) 

was developed by Rieser-Schssler et al. (2013) specifically for route generation in high-

resolution networks and successfully applied to different bike and route choice problems. The 

ability to apply this non-behavioral approach easily across different context and countries is a 

clear advantage, with only an application-specific cost function being needed for each study. The 

method employs a link elimination approach which means that links of the current least cost path 

are eliminated before the next least cost path is searched. This is repeated until the required 

number of routes is found. 

Broach et al. (2009) developed a sophisticated choice set generation algorithm based on 

multiple permutations of labeled path attributes, which seems to out-perform comparable 

implementations of other route choice set generation algorithms. 

Bierlaire et al. (2010) sampled the path alternatives using a biased random walk 

algorithm, with arc weights at each node set by the ratio of the length of the shortest path to the 

destination using any arc and using the target arc. The sampling bias was subsequently corrected 

in the choice model. 

Menghini et al. (2010) employed a breadth-first search link elimination approach. It 

searches for the shortest path between origin and destination and removes the links in turn. These 

shortest paths became in turn the starting points for the next iteration of link elimination. The 

algorithm kept track of the networks generated and retained only unique and connected networks 
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and in turn shortest paths for the choice set. The depth, i.e. number of links removed, was 

increased until the desired number of distinct routes in the choice set had been generated or the 

original shortest path was exhausted. 

Frejinger et al. (2009) presented a new paradigm for choice set generation in the context 

of route choice model estimation. The choice sets were assumed to contain all paths connecting 

each origin-destination pair. Although this is behaviorally questionable, this assumption was 

made in order to avoid bias in the econometric model. These sets were in general impossible to 

generate explicitly. Therefore, an importance sampling approach was proposed to generate 

subsets of paths suitable for model estimation. Using only a subset of alternatives requires the 

path utilities to be corrected according to the sampling protocol to obtain unbiased parameter 

estimates. A sampling correction was derived for the proposed algorithm. 

2.6 Path-based Cyclist Route Choice Behavior Analysis 

Based on the methods that generate appropriate choice set, the path-based cyclist route 

choice behavior analysis can be conducted. Several previous research studies concentrating on 

the path-based route choice behavior are summarized as follows. 

Stinson and Bhat (2003) examined the explanatory variables that have a significant 

impact on the commuting cycling trips. Two categories of factors were considered which include 

route level and link level attributes. Data used in this research study were collected based on a 

stated preference survey completed through the internet. Empirical models were developed, and 

results were concluded that the most critical factor for commuting trips is travel time. Other 

factors that affect the route choice significantly included bicycle facilities (e.g., bike lanes and 

separate paths), traffic condition, and pavement quality. Policy implications were provided for 

bicycle facility planning based on these results.  

Dill and Gliebe (2008) studied the impact of different types of bicycle facilities on 

bicycle activities. GPS data were utilized with a sample of 164 cyclists in Portland, OR from 

March to November 2007. The cyclists selected in this research study usually bike more than one 

day per week. Four major sets of research questions were addressed with the GPS data. Results 

revealed that most of the cycling trips generated by the participants are for utilitarian purposes. 

Approximately half of the cycling trips occurred during AM and PM peak hours. Bicycle 

facilities were preferred by cyclists biking for utilitarian purposes. The main factors that affect 

the route choice were cycling distance and the traffic condition.  

Sener et al. (2009) examined a comprehensive set of attributes that influence bicycle 

route choice. The data used in the analysis was drawn from a web based stated preference survey 

of Texas bicyclists. The results of the study emphasized the importance of a comprehensive 

evaluation of both route-related attributes and bicyclists’ demographics in bicycle route choice 

decisions. The empirical results indicated that travel time (for commuters) and motorized traffic 

volume were the most important attributes in bicycle route choice. Other route attributes with a 

high impact included number of stop signs, red light, and cross-streets, speed limits, on-street 

parking characteristics, and whether there existed a continuous bicycle facility on the route. 

Winters et al. (2010) investigated differences in total distance, road type used, and built 

environment features for shortest-path routes versus actual routes for utilitarian bicycle trips and 
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car trips in Metro Vancouver, Canada. Regardless of mode, people did not detour far off the 

shortest route: detour ratios (actual distance/shortest distance) were similar. Compared with 

shortest-path routes, cyclists spent significantly less of their travel distance along arterial roads 

and significantly more along local roads, off-street paths, and routes with bike facilities. As 

expected, car trips were more likely to be along highways and less likely to be along local roads 

than predicted by the shortest route.  

Charlton et al. (2011) introduced the CycleTracks smartphone application and its use for 

recording cycling trips by cyclists. The cycling data in terms of cyclist-related and trip-related 

information were collected via this smartphone application. The potential data bias was 

discussed, and route choice model was developed based on this dataset.  

Following the research of the first bicycle route choice model built with GPS data in 

Zurich, Hood et al. (2011) analyzed the cyclist route choice and developed a route choice model 

based on the crowdsourced bicycle data collected from CycleTracks. A “doubly stochastic” 

choice set generation method was adopted in this research based on the study conducted by Bovy 

and Fiorenzo Catalano (2007). Instead of using the multinomial logit model that has the 

independence of irrelevant alternatives property, a path size logit model was developed with the 

path size factor of Ben-Akiva and Bierlaire (1999). The model estimation results indicated that 

bike lanes have a positive impact on cycling, while steep slope and turning have a negative 

impact.  

To analyze the bicyclists’ route choice, especially the preference for bicycle facilities, 

Broach et al. (2012) developed a route choice model base on the GPS data of 1449 cycling trips 

occurred in Portland, Oregon. Three choice set generation methods (K-shortest paths, route 

labeling, and simulated shortest paths) were compared, and a modified method of route labeling 

was developed and utilized for this research study. A path size logit model was built for cyclist 

route choice analysis, and route choice differences between commuters and non-commuters were 

identified. The model results showed that factors including trip distance, intersection control, 

turning, traffic volume, and slope have significant impact on cyclists’ route choice. In addition, 

trip distance was more important to commuters than non-commuters.  

Chen and Chen (2013) examined recreational cyclists’ preferences for bicycle routes in 

Taiwan using the stated preference method. The multinomial logit model was employed to 

estimate the relative influences of facility attributes on bicycle route choice behavior, while the 

latent class model was adopted in order to better understand the differences in preferences. Using 

data collected from 232 recreational cyclists in Taiwan, the results indicated that bicycle facility 

attributes, such as basic facilities and maintenance equipment, tourist information centers, and 

attractions had significant effects on recreational cyclists’ preferences. Cyclists with high levels 

of recreation specialization appeared to be more likely to choose challenge and endurance routes 

than those with low recreational specialization.  

Casello and Usyukov (2014) estimated the utility/generalized cost function of the path 

alternatives for each cyclist based on the GPS data that record the cycling activities. Four non-

chosen alternatives were generated for the choice set. Two multinomial logit models were 

developed for the route choice analysis. The explanatory variables including the length of trips, 

automobile speed, slope, and the bike lanes were examined to see whether they have significant 
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impacts on cyclists’ route choice. The predictive powers of the multinomial logit models were 

tested based on the 181 trips which were not used for the model parameter estimation. The 

results showed that vehicle speeds and the presence of bike lanes are factors that affect cyclists’ 

route choice significantly.  

Yeboah et al. (2015) used the GPS tracks and travel diary data from 79 cyclists around 

Newcastle upon Tyne in North East England as well as the OpenStreetMap (OSM) as the 

transportation network to conduct route choice analysis. Factors based on the previous relevant 

literature were examined to test the impact on commuting cycling trips. The results showed that 

OSM combined with GPS data of cycling trajectory performs well for bicyclists’ route choice 

research. The transportation network restrictions including one-way road, turning restrictions and 

access for the selected routes and the shortest paths were significant. In other words, it is critical 

to consider route directness for both restricted and unrestricted transportation networks.  

Bergman and Oksanen (2016) collected the crowdsourced bicycle data from Sports 

Tracker and utilized this data and OpenStreetMap to provide automatic route choices. The Sports 

Tracking data was pre-processed, and path choice set was generated. An advanced Hidden 

Markov Model (HMM)-based algorithm and a simple geometric point-to-curve method were 

utilized and compared to conduct the map-matching procedure. Results showed that HMM-based 

algorithm provides better matching performance. 

Grond (2016) conducted a research study on the influence of physical and environmental 

factors of the network on cyclists’ route choice. This study can provide a better understanding of 

the impact of physical infrastructure which will guide the city planners for bicycle facility 

investment. Data utilized in this research study were collected from the cycling application with 

cycling trips recorded from August 23 and September 23, 2015 in the City of Toronto. GPS 

tracks were matched to the GIS network dataset containing road characteristics. A path size 

multinomial logit model was developed for route choice analysis. Factors including bicycle 

facilities, road characteristics, demographic information of the cyclists were carefully examined 

in the model.  

Khatri et al. (2016) utilized GPS data collected from Grid Bikeshare recording 9,101 trips 

created by 1,866 bikeshare users in Phoenix, Arizona to analyze the cyclists’ route choice 

behavior, especially the impact of bicycle facility. Only direct utilitarian trips were considered in 

this research study, and circuitous trips or recreational trips were removed from the dataset. The 

results showing route choice behavior of register users and casual users were compared. It was 

found that registered users prefer roads with low traffic volume and bicycle facilities, and their 

trip distance tend to be shorter. A path size logit model was developed subsequently to model 

cyclists’ route choice. Results revealed that cyclists are sensitive to the trip distance and prefer 

using bicycle facilities. Casual users disliked left turns compared to right turns. Explanatory 

variables including one-way road, AADT, and trip distance were found to have a negative impact 

on route choice, while the number of signalized intersections was likely to affect cyclists’ route 

choice positively.  

To conclude, a summary of the path-based route choice analysis studies is provided 

below in TABLE 2.2. 
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Table 2.2  Summary of Path-based Route Choice Analysis 

Year Author Data Methods Results 

2008 
Dill and 

Gliebe 

GPS data of 

Portland, OR 

USGS Digital 

Elevation 

Model 

The majority of the bicycle travels 

were for utilitarian purposes. 

About half of the trips occurred 

during morning and evening peak 

travel times. Distance and traffic 

volume have a negative impact on 

route choice. 

2009 Sener et al.  

A web based 

stated preference 

survey of Texas 

bicyclists 

Panel mixed 

multinomial 

logit 

Travel time (for commuters) and 

motorized traffic volume are the 

most important attributes in 

bicycle route choice.  

2010 Winters et al. 

A survey 

conducted in 2006 

in Metro 

Vancouver 

Logistic 

model 

Road infrastructure and bicycle-

specific aspects of the built 

environment influence people’s 

travel patterns: that car drivers 

detour from shortest routes to fast 

roads and cyclists deviate from 

shortest routes to routes with better 

bicycle facilities. 

2011 
Charlton et 

al. 

Data from 

CycleTracks 

application 

Bicycle route 

choice model 

Cyclists are sensitive to slope, 

presence of bike lanes or bike 

route designations. The route 

choice behavior is also influenced 

by trip purpose and gender. 

2011 Hood et al. 

Data from 

CycleTracks 

application 

Path Size 

Multinomial 

Logit model 

Bike lanes are preferred compared 

to other types of bicycle facilities, 

while steep slopes are disfavored. 

Length and turns have negative 

impact on route choice. 

Surprisingly, traffic volume, 

speed, number of lanes, crime rates 

and nightfall have no impact on 

route choice. 

2012 Broach et al. 

The GPS data 

collected in 

Portland, Oregon 

Path-Size 

Logit (PSL) 

model 

Cyclists are sensitive to distance, 

turn frequency, slope, intersection 

control and volumes. For 

commuters, they are more 

sensitive to distance than non-

commuters. 

2013 
Chen and 

Chen 

Data collected 

from 232 

recreational 

cyclists in Taiwan 

Multinomial 

logit model 

and latent 

class model 

Bicycle facility attributes, such as 

basic facilities and maintenance 

equipment, tourist information 

centers, and attractions had 

significant effects on recreational 
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cyclists’ preferences.  

2014 
Casello and 

Usyukov 

724 cycling trip 

GPS data 

Multimodal 

logit models 

Cyclists consider both vehicle 

speeds and the presence or absence 

of a bike lane during route choice 

process. 

2015 Yeboah et al. 

OpenStreetMap, 

GPS tracks 

(7 days) and travel 

diary data 

Four-step 

method for 

generating 

routes 

Network restrictions for both 

observed and shortest paths are 

significant. 

2016 
Bergman and 

Oksanen 

OpenStreetMap 

and mobile 

application data 

from Sports 

Tracker 

advanced 

HMM-based 

algorithm 

HMM-based algorithm has better 

matching results in terms of the 

number of the correctly matched 

road segments. 

2016 Grond 

GPS dataset from 

the City of 

Toronto’s cycling 

app 

path-size 

multinomial 

logit model 

Steep hills, high traffic volumes, 

left turns without signalized 

intersections and right turns at 

signalized intersections have 

negative impact on route choice. 

2016 Khatri et al. 

GPS data from 

Grid Bikeshare in 

Phoenix, Arizona 

Path Size 

Logit Model 

The proportion of one way 

segments, AADT and length of 

trip have a negative influence on 

route choice and number of 

signalized intersections has a 

positive influence on selecting 

routes. 

 

2.7 Summary 

This chapter provides a comprehensive review of the previous research on both linked-

based and path-based cyclist route choice behavior analysis especially those based on 

crowdsourced bicycle data. It is intended to give a better understanding of crowdsourcing, and 

existing research efforts utilizing crowdsourced data which will provide a useful reference for 

future studies. 
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Chapter 3.  Collecting Crowdsourced Data and Other Supporting 

Data 

3.1 Introduction 

Collecting data including crowdsourced bicycle data from Strava and other relevant 

supporting data is the first step of this research study. Chapter 3 provides an introduction of the 

collected Strava data as wells as the critical supporting data that will be utilized for the modeling 

in the model development sections.  

The following sections in Chapter 3 are organized as follows. Section 3.2 introduces 

Strava in detail to give an overview of this smartphone application. Section 3.3 presents the 

Strava data that are collected for the research study. Section 3.4 shows the data view to Strava 

data for different aspects including street view, intersection view, OD view, and the heatmap 

view. Section 3.5 presents the other essential supporting data that will be used for the link-based 

route choice behavior. Finally, Section 3.6 concludes this chapter with a summary. 

3.2 Introduction to Strava 

Smartphone applications like Strava tend to generate route data that are saved in 

databanks together with the demographic details of the user derived from the application. These 

route data contain sensitive information, such as the user’s place of residence or workplace, 

which can also be connected to profile information such as name, age, gender, and other freely 

given information. When passing on data to third parties, vendors are obliged to anonymize this 

information in accordance with the data protection laws and general conditions of business. In 

consequence, the buyer acquires data that have already been aggregated and is not allowed for 

any tracing back to the people that created the data. Anonymized demographic information such 

as gender and age are permitted to remain in the dataset. The data from global vendors of 

smartphone applications offer the largest range and number of possible users. Considerable 

differences can emerge within the user structure. The data are obtained second by second, saved 

at the end of the journey and transmitted to a server. The data can then be viewed by users on 

their smartphones and shared with others. This social factor feeds the user’s motivation, in sporty 

applications such as Strava, to share the route just traveled with others or to keep a training 

journal.  

The routing data used in this project are collected from Strava smartphone application 

developed by a technology company recording the cyclist travel trajectory with the GPS located 

in their smartphones. A screenshot of the application interface can be seen in Figure 3.1, which 

also shows some of the information that the app displays to the user after a route has been 

recorded. The application is available for use by any person who has a GPS device and access to 

the internet, with the majority of users comprised of cyclists and runners. As the cyclist uses the 

app, information such as duration, speed, elevation change, and distance are collected, along with 

the GPS route information. This allows the user to be able to look and see not only where they 

went but they can also analyze how well they performed and compared with other users. The 

accuracy of the GPS data from both apps depends on the connection to the GPS satellites, with 

more satellites available the better the accuracy. Having an unobstructed signal to the satellites is 
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also important to have high-quality accuracy, with dense tree foliage and tall buildings obscuring 

and scattering the GPS signal. 

 

Figure 3.1: Strava App Screen Shots 

 

3.3 Strava Data 

The GPS data collected from the Strava users usually include the biking information on 

the network at both the link-level and the intersection-level. The link-level data set contains the 

Strava user counts on each roadway segment and the intersection-level data set includes the 

number of cyclists for each intersection as well as their waiting times. To record the cycling 

route of the Strava users, the OD matrix data set is provided.   

The data offered by Strava Metro usually contain three main components including core 

data, roll-ups, and reports. The core data provide cycling information in each minute in the city 

network at both the link-level and intersection-level. In addition, it provides the OD pairs for the 

cycling trips. The roll-ups data are the aggregated data developed from the core data to obtain 

cycling information for different times and trip purposes. And the reports of the data show a 

summary of the cyclists’ demographic information. The detailed data deliveries of Strava Metro 

can be found below. 

3.3.1 Core Data 

1. Link-level data set: Database file that presents the cycling information (especially bicycle 

counts) on each roadway segment during the time period of the delivery. 

2. Intersection-level data set: Database file shows the cyclist counts and waiting time at each 

intersection during the time period of the delivery. 

3. OD data: Origin/Destination file provides the cycling trip information including the OD 

pairs during the time period of the delivery. 
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3.3.2 Roll-ups 

The roll-up data are the categorized core datasets that are processed by Strava Metro. For the 

link-level and intersection-level core dataset, several roll-ups are provided to summarize the 

views that present total counts, hour groupings, monthly use, weekday/weekend, and 

seasonality. In addition, other views of the roll-ups can be generated by researchers based on 

the specific research needs. 

The seasonality and hour groupings categorized for this research studies in the City of 

Charlotte are shown as follows. 

On season: From March to October 

Off-season: From November to February 

Early AM hours: 12:00 am - 5:59 am (labeled as_0) 

AM peak hours: 6:00 am - 8:59 am (labeled as_1) 

Mid-day hours: 9:00 am - 2:59 pm (labeled as_2) 

Peak afternoon hours: 3:00 pm - 5:59 pm (labeled as_3) 

Evening hours: 6:00 pm - 7:59 pm (labeled as_4) 

Late evening hours: 8:00 pm - 11:59 pm (labeled as_5) 

3.3.3 Reports 

1. Demographics: A report that summarizes the cyclist demographic information in terms of 

different age and gender. 

2. Summary: The total Strava user counts and the cycling activities recorded during the time 

period of the delivery.  

3.4 Data View 

Metro Data view is another way for researchers to visualize the cycling information on 

the total biking activities, total cyclists, and the commuters aggregated to the street level, 

intersection and the origin-destination polygonal geometry. The default data view shows the total 

cycling activities in the whole network. Researchers can find the useful information (e.g., total 

activities) by selecting the intersection button in the map interface. When selecting the 

intersection view, the median waiting time of crossing an intersection can be shown. In addition, 

a heatmap is provided to have an overview of the number of cycling activities in the whole 

network. The four data views that Strava Metro provided for the City of Charlotte can be seen as 

follows. 

3.4.1 Street 

The Street Data illustrating the cyclist counts in the City of Charlotte can be found in Figure 

3.2, with dark blue color showing the lowest number of rides, and dark red representing the 

highest activity counts. The researchers can find the levels of activity counts by different 

colors corresponding to the number of rides shown in the legend. By hovering on the legend, 

researchers can find the percent distribution of number of streets. In addition, the counts of 

cyclists on a specific road segment can be seen by hovering on that street. 



22 

 

Figure 3.2: Charlotte Metro Data View 2017 Sample: Total activity counts from December 01, 2016 to 

November 30, 2017 

 

3.4.2 Intersections 

The intersection view can be presented by selecting the intersection button on the map 

interface. The default map view will not provide the intersection-level data when the 

intersection selection is off.  

There are multiple map interfaces that can be selected to show different data information. To 

view the counts of activities, rides button should be selected. Also, clicking on the cyclists 

button, the number of cyclists at the intersection can be shown. Cycling for different trip 

purposes can also be displayed by clicking on the commutes button to show the number of 

commuting trips at each intersection.  

The visualization view of the intersection map interface can provide an overview of the rides, 

commutes, and bicyclist counts at each intersection, with larger nodes representing the higher 

counts, and brighter nodes depicting the longer intersection crossing time. When hovering on 

the specific intersection that a researcher might be interested in, the map will show the exact 

cycling activity data. The detailed intersection data view in the City of Charlotte can be 

found in Figure 3.3. 
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Figure 3.3: Charlotte Intersection Metro Data View 2017 Sample: Total activity counts from December 01, 

2016 to November 30, 2017 

 

3.4.3 Origin and Destination 

The origin and destination data view shows a cycling trip generated by a bicyclist with an 

origin/destination polygon layer based on a contiguous 350-meter hexagonal bin. Similar to 

the intersection button, the default data view will not show the OD pair information when the 

OD button is not selected.  

Like the intersection view, different cycling information data can be obtained by selecting the 

toggle buttons shown on the map interface. By selecting the “Rides” button, the total number 

of cycling activities started within the polygon can be shown. To view the bicyclist counts, 

researchers can click on the cyclist button to obtain data regarding the number of bicyclists 

departed within the polygon.   

Similarly, the visualization of the OD map indicates an overview of the rides, commutes, and 

bicyclists within the polygon with darker polygons representing the fewer counts and lighter 

polygons depicting the higher counts. When hovering on the polygon of a specific area, 

researchers can see the exact data of the trip origin. To view the destination polygons 

associated with the selected origin polygon, researchers can click on the origin polygon. To 

distinguish between origins and destinations, the destination polygons will be shown in pink. 

The darker color represents polygons with more rides and the lighter color depicts less rides. 

The origin destination data view in the City of Charlotte can be seen in Figure 3.4. 
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Figure 3.4: Charlotte Origin Destination Metro Data View 2017 Sample 

 

3.4.4 Heat Map 

The heat map view shows a visualization of the GPS points which are aggregated to the road 

segments. To view the heatmap of the streets or intersection, the “Heat button” should be 

selected. Streets with higher cycling activity counts will be shown in brighter lines, while 

streets with a fewer number of cycling activities will be shown inn darker lines. The heat 

map view of the City of Charlotte can be seen in Figure 3.5. 

 

Figure 3.5: Charlotte Heat Map View 

 

3.5 Other supporting data 

3.5.1 Bicycle facilities 

The bicycle facilities might have a potential impact on the cycling behavior. Therefore, the 

information on the existing bicycle facilities in the City of Charlotte are collected for the 
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cycling behavior analysis. A bicycle facility map showing the bike lanes, off street paths, 

signed bike routes, suggested bike routes, greenways, and the low comfort suggested bike 

routes can be seen in Figure 3.7. Please note that this map can be found on the following 

website: 

http://charlotte.maps.arcgis.com/apps/PanelsLegend/index.html?appid=00e8015ea3e54607a8

80fe31cc7e2fbf. 

 

Figure 3.6: Bike Facilities in the City of Charlotte 

3.5.2 Population 

The population data collected from the US census data set can be seen in Figure 3.8. Please 

note that this data are found on the following website: 

http://www.arcgis.com/home/webmap/viewer.html?url=https://services1.arcgis.com/yfahUF

AYAdeS5rmM/ArcGIS/rest/services/Enriched%20Enriched%20Charlotte%20Blocks/Featur

eServer&source=sd. 

±

http://charlotte.maps.arcgis.com/apps/PanelsLegend/index.html?appid=00e8015ea3e54607a880fe31cc7e2fbf
http://charlotte.maps.arcgis.com/apps/PanelsLegend/index.html?appid=00e8015ea3e54607a880fe31cc7e2fbf
http://www.arcgis.com/home/webmap/viewer.html?url=https://services1.arcgis.com/yfahUFAYAdeS5rmM/ArcGIS/rest/services/Enriched%20Enriched%20Charlotte%20Blocks/FeatureServer&source=sd
http://www.arcgis.com/home/webmap/viewer.html?url=https://services1.arcgis.com/yfahUFAYAdeS5rmM/ArcGIS/rest/services/Enriched%20Enriched%20Charlotte%20Blocks/FeatureServer&source=sd
http://www.arcgis.com/home/webmap/viewer.html?url=https://services1.arcgis.com/yfahUFAYAdeS5rmM/ArcGIS/rest/services/Enriched%20Enriched%20Charlotte%20Blocks/FeatureServer&source=sd
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Figure 3.7: Total Population in the City of Charlotte 

3.5.3 Slope 

The slope cell data shown in Figure 3.9 are collected from the ArcGIS online dataset. Please 

note that researchers can find this data by adding data from ArcGIS online with 

“Lidar2017_Slope”.  

±
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Figure 3.8: Slope in City of Charlotte 

3.6 Summary 

This chapter shows the data collected for this research such as Strava data that contains 

cycling information, demographic data, bicycle facility data, and slope data in the City of 

Charlotte. These data will be utilized in the cycling behavior modeling in the model development 

chapter.  
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Chapter 4.  Data Descriptive Analyses 

4.1 Introduction 

This chapter analyzes the crowdsourced bicycle data collected from Strava. Descriptive 

analyses are conducted based on the Strava data in terms of demographics, trip purposes, bicycle 

volume for different months, time of day, and day of week, and origin and destination of cycling 

trips. 

The sections in Chapter 4 are organized as follows. Section 4.2 presents the demographic 

information on Strava users. Section 4.3 describes the cycling trips for different trip purposes. 

Section 4.4 shows the bicycle count data by different month of year, weekday and weekend, and 

time of day. Section 4.5 provides the origin/destination information for Strava users’ cycling 

trips. Finally, Section 4.6 concludes the chapter with a summary.  

4.2 Demographics 

According to the data collected from Strava, there were 8,857 cyclists using Strava 

applications to record their cycling trips during December 2016 to November 2017 in the City of 

Charlotte. 140,428 trips were generated by these Strava users.  

From the cyclist demographic information report provided by Strava, most of the cyclists 

are male accounting for 80.49% of the total Strava users in the City of Charlotte. Only 14.91% of 

the cyclists are female. In addition, 407 cyclists prefer to not present their gender in the 

application. The number of cyclist counts in the City of Charlotte from December 2016 to 

November 2017 is presented in Figure 4.1. 

 

Figure 4.1: Strava User Counts for Different Genders  

 

The number of Strava users from different age groups can be found in the demographic 

information report. According to the data, the ages of the Strava users range from under 25 to 
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over 95 which cover both young and old cyclists. The portion of cyclists from different age 

groups is presented in Figure 4.2. From the figure, it can be seen that the majority of the cyclists 

are between 25 and 54. Cyclists over 65 are very few. However, there are 1578 cyclists who do 

not provide their ages to Strava. 

 

Figure 4.2: Portion of Cyclists from Different Age Groups 

 

4.3 Trip Purpose 

The trip purposes of the Strava users are categorized into two parts which are commute 

trips and non-commute trips. The majority of the cycling trips generated by Strava users are non-

commute trips. Figure 4.3 shows the comparison of the number of commute trips and non-

commute trips in the City of Charlotte during December 2016 to November 2017. From the 

figure, it can be seen that the number of commute trips is only 25,737, while the number of non-

commute trips is 114,691.  
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Figure 4.3: Cycling Activities for Different Trip Purposes 

 

To view the distribution of the commute cyclist counts on each road segment in the City 

of Charlotte, a map is presented in Figure 4.4. From this figure, it can be found that the road 

segments associated with high bicycle volume are located in the center city where the business 

district of Charlotte is located. The reason that high volume of commute trips occurred in center 

city is probably related to the following facts: 1) It is difficult to drive in the center city since 

there are a lot of one-way roads; 2) The parking issue can be severe in the center city. 
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Figure 4.4: Total Commute Trips 

4.4 Cyclist Counts 

4.4.1 Total Cyclist Counts 

To have an overview of the cyclist distribution in the City of Charlotte, a map that presents 

the number of cyclist counts on each roadway segment from December 2016 to November 

2017 is shown in Figure 4.5. It can be seen that most of the road segments have low cyclist 

counts.  

±
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Figure 4.5: Total Cyclist Counts  

 

From the total cyclist counts presented in the above figure, four locations with high bicycle 

volumes are identified and shown in Figure 4.6 which are greenway, school, airport, and 

park. These locations are popular among Strava users in the City of Charlotte.  

±
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4.6.a Greenway                                                                   4.6.b School 

       
4.6.c Airport                                                                        4.6.d Park 

Figure 4.6: Four Popular Cycling Locations  

 

4.4.2 Month of Year 

To discover the variation trend of the cyclist distribution in the City of Charlotte from 

December 2016 to November 2017, maps are created to illustrate the bicyclist counts on each 

road segment in the whole network in Figure 4.7. Since cycling activities have a strong 

relationship with the weather condition, the cyclists’ behavior for each month of year may 

vary with the change of temperature and the specific weather condition throughout the year.  
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4.7.a December 2016                          4.7.b January 2017                             4.7.c February 2017 

 
4.7.e March 2017                                     4.7.f April 2017                                      4.7.g May 2017 
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4.7.h June 2017                                       4.7.i July 2017                                 4.7.j August 2017 

 
4.7.k September 2017                              4.7.l October 2017                           4.7.m November 2017 

Figure 4.7: Total Bicycle Volume in Each Month  

The total bicycle volumes in the whole network for each month in the investigation year are 

presented in Figure 4.8. Comparing the twelve maps shown in Figure 4.7 and the bar chart in 

Figure 4.8, the characteristics of cycling behavior in twelve months are concluded as follows: 

1. The common feature of the cycling behavior over the twelve months is the 

consistency of the four popular cycling locations which are greenway, school, airport, 

and park.  

2. The actual on-season months for cycling in the City of Charlotte are from April to 

October. The total bicycle volumes in the whole network are increasing from 
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December 2016 and reach a peak in July 2017. With the variation of the temperature 

and weather condition, the total bicycle volumes begin to decrease from July 2017 to 

November 2017.  

3. The variances of the bicycle volumes for different locations in each month are not the 

same. 

4. Greenways are popular among Strava users and the bicycle volume on greenway 

starts to increase from February and decrease in December. For the uptown area and 

the roads near airport area, the bicycle volume increases from April and decreases in 

October. For the bicycle volume in the park, it remains high volume from August to 

November.  

 
Figure 4.8: Total Bicycle Volume in the Network 

4.4.3 Weekdays and Weekends 

The cycling activities occurred on weekdays and weekends are different. To see the volume 

difference between weekdays and weekends on each road segment, a map is generated in 

Figure 4.9 where red lines represent the higher bicycle volume on weekends and green lines 

depict the higher volume on weekdays. According to Figure 4.9, the uptown area in the City 

of Charlotte appears to have more green lines which indicates more weekday cycling trips in 

this location.  
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Figure 4.9: Total Bicycle Volume on Weekdays and Weekends 

4.4.4 Time of Day 

The bicycle volume for each road segment varies with different time of day. The variation of 

bicycle volume is presented in Figure 4.10. From the figure, one can see that most of the 

cycling activities occurred from 5 am in the morning to 7 pm in the evening. Two cycling 

peaks are identified in this figure which are around 8 am and 6 pm. The bicycle volume at 5 

am is higher than the volume at 6 am and 7 am. It can be assumed that cyclists choose to bike 

early in the morning before working hour. There is a decrease in the middle of the day. Two 

assumptions can be made. First, the temperature around noon is high. Second, workers are 

busy during the day.  
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Figure 4.10: Total Bicycle Volume for Different Time of Day 

4.5 Origin/Destination 

According to the origin and destination data provided by Strava Metro, the total number 

of unique OD pairs is 23,617. Among these OD pairs, the most popular one is from Polygon ID 

2857 back to the same polygon where the parking lot of the US National Whitewater Center is 

located. The location of this polygon is presented in Figure 4.11. There are multiple greenways 

around this area, cyclists can drive to park at this location and bike on the greenways nearby.  

 

Figure 4.11: The Location of the Most Popular OD Pair 
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During the investigation year, a total of 2,384 unique bicyclists select to start their trips 

from the location highlighted in Figure 4.11 and end their trips at the same location. 11,602 

cycling trips are generated by these bicyclists which are all non-commute trips. The number of 

the bicyclists and cycling trips for this OD pair during different time periods can be found in 

Table 4.1.  

Table 4.1  Number of Bicyclists and Trips during Different Time Periods 
Time Period 00:00 – 05:59 06:00 – 8:59 09:00 – 14:59 15:00 – 17:59 18:00 – 19:59 20:00 – 23:59 

Number of 

Bicyclists 

1 395 1867 1097 482 28 

Number of 

Cycling Trips 

1 763 5750 3862 1167 59 

 

According to the table above, the numbers of bicyclists and cycling trips vary with 

different time periods. Most of the bicyclists select to bike from 9 am to 6 pm. The variation is 

shown in Figure 4.12 and the portion of cycling trips occurred in each time period is presented in 

Figure 4.13. According to Figure 4.12, both the numbers of bicyclists and cycling trips increase 

from 00:00 to 15:00 and then begin to decrease. From Figure 4.13, nearly half of the cycling trips 

occurred from 9 am to 3 pm. Only 7.09% trips occurred before 9 am and after 8 pm. 

 

Figure 4.12: The Variation of the Bicyclist/Trip Number for Different Time Periods 
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Figure 4.13: The Portion of Cycling Trips Occurred in Each Time Period 

Comparing the commute trips and non-commute trips, most of the commute trips with the 

same OD pair are generated by a unique bicyclist, while several non-commute trips occurred at 

popular locations are generated by multiple bicyclists. That is to say, the commuters have 

distinctive commute trips and the non-commuters have similar recreational trips.  

The detailed analyses based on the total cyclist counts, total commute counts, and the 

activity counts on weekdays and weekends in each origin and destination polygon are presented 

in the following sections.  

4.5.1 Total Cyclist Counts 

To have an overview of the origins selected by the Strava users in the City of Charlotte from 

December 2016 to November 2017, a map that illustrates the number of cyclists in each 

origin polygon is presented in Figure 4.14. It can be seen that the majority of the preferred 

origins are located in the center city, the Renaissance Park near airport, around the US 

National Whitewater Center (the western part of the city), Colonel Francis J. Beatty Regional 

Park (the southern part of the city), and the Sherman Branch Nature Preserve (the eastern part 

of the city) surrounded by multiple greenways. Most of the trips started in the center, 

northern and southern parts of the city.  
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Figure 4.14: Total Cyclist Counts in Each Origin Polygon 

Similarly, the total cyclist counts in each destination polygon in the City of Charlotte are 

shown in Figure 4.15. Comparing the cyclist counts in the origin and destination polygons, 

the locations of destination polygons associated with high number of cyclist counts remain 

the same as the locations of the preferred origin polygons.  
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Figure 4.15: Total Cyclist Counts in Each Destination Polygon 

4.5.2 Total Commute Counts 

To see the difference of popular origin and destination locations between the total trips and 

the commute trips, the total commute counts within each origin and destination polygon are 

aggregated and presented in the following figures.  
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Figure 4.16: Total Commute Counts in Each Origin Polygon 

In Figure 4.16, most of the commute trips start from the center city. Compared to the total 

cyclist counts in each origin polygon containing both commute and non-commute trips, the 

locations near parks are no longer associated with high number of commute origins. Most of 

the origin polygons concentrate in the uptown area, and some others spread out in the 

northern and southern parts of the city.  
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Figure 4.17: Total Commute Counts in Each Destination Polygon 

Similar result can be found in Figure 4.17. Most of the destination polygons associated with 

high commute counts are located in the center city. Other selected destinations are spread out 

in the southern and northern parts of the city. 

4.5.3 Total Activity Counts on Weekdays and Weekends 

The cycling activities occurred on weekdays and weekends can be different. In order to 

discover the differences of the preferred origins and destinations for cycling trips on 

weekdays and weekends, two figures demonstrating the comparison of total activity counts 

on weekdays or weekends for each origin and destination polygon are presented in Figure 

4.18 and Figure 4.19. 
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Figure 4.18: Total Activity Counts on Weekdays and Weekends in Each Origin Polygon 

In Figure 4.18 and Figure 4.19, red polygons indicate more activity counts on weekends, 

green polygons represent more activity counts on weekdays, and yellow polygons 

demonstrate equal counts. According to Figure 4.18, more cycling trips start at the center and 

northern part of the city on weekdays, and more cycling activities start at the locations near 

parks on weekends. This result is consistent with the analysis based on the commute and non-

commute trips. 
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Figure 4.19: Total Activity Counts on Weekdays and Weekends in Each Destination Polygon 

Similar result can be found in Figure 4.19. The destination polygons associated with higher 

activity counts on weekdays are located in the center city. Compared to Figure 4.18, more 

destination polygons with higher activity counts on weekends occurred in the center city.  

4.6 Summary 

This chapter provides the descriptive analyses based on the crowdsourced bicycle data 

collected from Strava Metro. Demographic information on the Stava users and the trip purposes 

are analyzed based on the delivery report. Link-based bicycle counts in different month of year, 

on both weekdays and weekends, and for commute and non-commute trips are presented in 

several heatmaps. In addition, cycling information regarding different OD pairs is also provided.  
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Chapter 5.  Modeling Link-based Cyclist Route Choice Behavior 

5.1 Introduction 

This chapter is based on the 2018 USDOT Project 03 “Evaluating the Potential Use of 

Crowdsourced Bicycle Data in North Carolina”. The data processing method is adopted from the 

procedure provided in Chapter 6 of the 2018 USDOT Project report. Discrete choice models are 

developed to analyze the link-based cyclist route choice behavior and model comparison is 

conducted to identify the best fit for this behavior analysis. To examine the different impacts of 

explanatory variables on link-based route choice during selected time periods, discrete choice 

models are developed separately.  

The following sections are organized as follows. Section 5.2 through Section 5.5 provide 

the models developed for link-based cyclist route choice behavior including ordered logit (ORL) 

model, partial proportional odds (PPO) model, multinomial logit (MNL) model, and mixed logit 

(MXL) model respectively. Section 5.6 compares the models developed in the previous sections 

and identifies the best model structure for this research study. Section 5.7 develops two models 

for different selected time periods. Model result comparison is provided in this section. Finally, 

Section 5.8 concludes this chapter with a summary. 

5.2 Ordered Logit Model 

5.2.1 ORL Model Structure 

The ordered logit model is one of the traditional discrete choice models that is utilized for 

ordinal dependent variable analysis. In this research study, the number of bicycle counts for 

each road segment is divided into five categories which are low (0-39), low-average (40-79), 

average (80-119), high-average (120-159), and high (160-200). In the ORL model, the level 

of bicycle counts on a road segment is denoted as 𝑦𝑖 which is associated with the latent 

variable 𝑦𝑖
∗. The model specification is presented as follows: 

𝑦𝑖
∗ = 𝛽𝑋𝑖 + 휀𝑖                                                         Eq. (1) 

where 𝑦𝑖
∗ demonstrates the latent bicycle volume, 𝑋𝑖 denotes a vector of the explanatory 

variables contributing to the bicycle volume, 𝛽 represents the coefficients that will be 

estimated, and 휀𝑖 stands for the error term which is Gumbel distributed.  

In this research study, the continuous latent variable 𝑦𝑖
∗ is divided by the cut-points 𝜃𝑗  (j = 1, 

2, …, J) into J intervals (J = 5 for this scenario) and the bicycle volume is shown as follows: 

𝑦𝑖 =

{
 
 

 
 
1, −∞ ≤ 𝑦𝑖

∗ ≤ 𝜃1
2, 𝜃1 < 𝑦𝑖

∗ ≤ 𝜃2
3, 𝜃2 < 𝑦𝑖

∗ ≤ 𝜃3
4, 𝜃3 < 𝑦𝑖

∗ ≤ 𝜃4
5, 𝜃4 < 𝑦𝑖

∗ ≤ +∞

                                                    Eq. (2) 
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Thus, the probability of the level of bicycle counts on each road segment can be presented as 

follows: 

𝑃𝑖(𝑗) = {

F(𝜃1 − 𝛽𝑗𝑋𝑖), 𝑗 = 1

F(𝜃𝑗 − 𝛽𝑗𝑋𝑖) − F(𝜃𝑗−1 − 𝛽𝑗𝑋𝑖), 𝑗 = 2,… , 𝑗 − 1

1 − F(𝜃𝐽−1 − 𝛽𝑗𝑋𝑖), 𝑗 = 𝐽

                     Eq. (3) 

where F(.) represents the cumulative standard logistic distribution function.  

5.2.2 ORL Model Results 

To analyze the level of bicycle counts on each road segment and examine the factors 

affecting the link-based route choice behavior of the bicyclists in the City of Charlotte, an 

ordered logit model is developed. Explanatory variables are carefully selected for this ORL 

model which include temporal variables, road characteristics, sociodemographic information, 

geometry, and bicycle facilities. The detailed variable description is presented in Table 5.1. 

Table 5.1  Explanatory Variable 

Variable Description 

Temporal Variables  

Hour_0 If cycling time is during 00:00-05:59, then Hour_0 = 1. 

Hour_1 If cycling time is during 06:00-08:59, then Hour_1 = 1. 

Hour_2 If cycling time is during 09:00-14:59, then Hour_2 = 1. 

Hour_3 If cycling time is during 15:00-17:59, then Hour_3 = 1. 

Hour_4 If cycling time is during 18:00-19:59, then Hour_4 = 1. 

Hour_5 If cycling time is during 20:00-23:59, then Hour_5 = 1. 

Weekday  If bike on a weekday, then weekday = 1. 

Road Characteristics 

Speed Limit The posted speed limit on a roadway segment. 

RouteClass1 Interstate 

RouteClass2 US route 

RouteClass3 NC route 

RouteClass4 Secondary route 

MPLength The length of the segment in miles. 

ThruLaneCo The number of through lanes. 

Oneway If the road segment is one way, then oneway = 1 

Sociodemographic Characteristics 
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Variable Description 

TOTPOP_CY Total population in each census block. 

MEDAGE_CY The median age in each census block. 

MEDHINC_CY Median household income in each census block. 

Total_Hous Total households in each census block. 

TotalFamil Total families in each census block. 

FamilyPove Family poverty rate in each census block. 

Geometry 

Slope  The slope of a road segment at intersection.  

Bicycle Facilities 

B_offstree Off street paths 

B_bikelane Bike lanes 

B_signedbi Signed bike lanes 

B_suggeste Suggested bike routes 

B_suggest0 Suggested bike routes with low comfort 

B_greenway Greenway 

 

All the factors presented in Table 5.1 are included in the ordered logit model to determine the 

probability of each segment being selected by the Strava users. The maximum likelihood 

estimation method is utilized to estimate the model parameters and the thresholds in the 

ordered logit model. This process is conducted in SAS 9.4. To keep the variables that have a 

significant impact on the level of bicycle counts on each road segment, the backward 

selection demand is used in the model estimation procedure. A summary of the backward 

selection results is presented in Table 5.2. The model estimation results, and the fit statistics 

are shown in Table 5.3 and Table 5.4 respectively.  

Table 5.2  Summary of Backward Elimination 

Summary of Backward Elimination 

Step Effect Removed DF Wald Chi-Square Pr > ChiSq 

1 B_Hour_0 1 0.0000 0.9993 

2 B_offstree 1 0.0000 0.9951 

3 B_Hour_4 1 0.0027 0.9586 

4 SpeedLimit 1 0.1222 0.7266 

5 FamilyPove 1 0.4548 0.5001 
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Summary of Backward Elimination 

Step Effect Removed DF Wald Chi-Square Pr > ChiSq 

6 TOTPOP_CY 1 0.4030 0.5255 

7 B_bikelane 1 0.6974 0.4037 

 

Table 5.3  Ordered Logit Model Estimation Results 

Analysis of Maximum Likelihood Estimates 

Parameter   DF Estimate Standard Error Wald Chi-Square Pr > ChiSq 

Intercept 5 1 1.6165 1.0468 2.3847 0.1225 

Intercept 4 1 3.6935 1.0534 12.2937 0.0005 

Intercept 3 1 4.0366 1.0565 14.5970 0.0001 

Intercept 2 1 5.4232 1.0882 24.8353 <.0001 

B_weekday   1 -4.2510 0.3204 176.0312 <.0001 

B_Hour_1   1 1.0789 0.4326 6.2192 0.0126 

B_Hour_2   1 1.1850 0.4193 7.9859 0.0047 

B_Hour_3   1 2.9484 0.4137 50.7871 <.0001 

MPLength   1 1.0827 0.4673 5.3673 0.0205 

ThruLaneCo   1 0.6786 0.0853 63.2215 <.0001 

MEDAGE_CY   1 0.0244 0.0115 4.4958 0.0340 

MEDHINC_CY   1 0.000032 2.773E-6 129.7401 <.0001 

Total_Hous   1 0.00119 0.000345 11.8828 0.0006 

TotalFamil   1 -0.00133 0.000470 8.0179 0.0046 

Slope   1 -0.0506 0.00959 27.8175 <.0001 

B_signedbi   1 -1.1172 0.1814 37.9421 <.0001 

B_suggeste   1 0.7100 0.3414 4.3260 0.0375 

B_suggest0   1 -1.8420 0.3542 27.0457 <.0001 

B_greenway   1 2.6567 1.0285 6.6720 0.0098 

RouteClass1   1 -0.6356 0.2719 5.4624 0.0194 

RouteClass2   1 0.8828 0.2390 13.6409 0.0002 

RouteClass3   1 -0.3567 0.1395 6.5407 0.0105 

Oneway   1 0.9971 0.1553 41.2258 <.0001 

 



53 

Table 5.4  Model Fit Statistics 

Criterion Intercept Only Intercept and Covariates 

AIC 7480.648 5802.726 

SC 7522.162 6114.085 

-2 Log L 7472.648 5742.726 

 

According to the backward elimination summary in Table 5.2, variables including time 

period from 00:00 to 05:59 and from 18:00 to 19:59, speed limit, off street paths, bike lanes, 

speed limit, total population, and family poverty rate do not have a significant impact on the 

level of bicycle counts on each road segment. Based on the model estimation results 

presented in Table 5.3, variables including weekday, total family, slope, signed bike lanes, 

suggested bike routes with low comfort, interstate route, and NC route all have a negative 

impact on the level of bicycle counts, while other variables which are time period from 6:00 

to 17:59, segment length, number of through lanes, median age, median household income, 

total household, suggested bike routes, greenway, US route, and one-way road all have a 

positive impact on the level of bicycle counts. The detailed interpretation of the impact of 

each factor on the level of bicycle counts will be provided in Section 5.6. AIC and -2LogL 

presented in Table 5.4 are indicators that measure the fitness of the model which will be used 

for model comparison in Section 5.6. 

5.3 Partial Proportional Odds Model 

5.3.1 PPO Model Structure 

The partial proportional odds model is developed based on the ordered logit model. In 

ordered logit model, the proportional odds (PO) assumption is subjected. It can be interpreted 

that the estimated parameters are restricted to be same across all the alternatives. However, 

this assumption is unrealistic. To relax the assumption, the PPO model is developed.  

The explanatory variables associated with each road segment are categorized into two 

groups. One contains parameters satisfying the PO assumption, which is presented as vector 

Xi, the other includes parameters that violate the PO assumption which is shown as vector Zi. 

The variables that violate the PO assumption are able to affect the response variables 

differently, while others remaining fixed parameters have the same effect across different 

levels. Thus, the PPO model with logit function is presented as follows: 

𝑃(𝑌𝑖 ≥ 𝑗) =
exp[𝜃𝑗−(𝑋𝑖

′𝛽𝑗+𝑍𝑖
′𝛾𝑗)]

1+exp[𝜃𝑗−(𝑋𝑖
′𝛽𝑗+𝑍𝑖

′𝛾𝑗)]
                                    Eq. (4) 

where j denotes the level of bicycle counts on each road segment and Yi represents the 

bicycle counts for road segment i, β and 𝛾 represents the coefficients that will be estimated, 

and 𝜃𝑗  demonstrates the threshold for jth cumulative logit.  
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To examine whether the explanatory variables violate the PO assumption or not, the Wald 

Chi-square tests are utilized during the model development. This procedure helps divide the 

explanatory variables into two groups which belong to either vector Xi or vector Zi. 

5.3.2 PPO Model Results 

This PPO model is built based on the ORL model developed in Section 5.2. A series of Wald 

Chi-square are conducted to test the explanatory variables that violate the PO assumption. 

These variables are presented in Table 5.5.  

Table 5.5  Linear Hypotheses Testing Results 

Label Wald Chi-Square Pr > ChiSq 

Hour_1_po 38.4832 <.0001 

ThruLaneCo_po 10.1651 0.0172 

MEDHINC_CY_po 33.7202 <.0001 

Total_hous_po 25.5679 <.0001 

TotalFamil_po 37.5464 <.0001 

B_suggeste_po 12.4505 0.0060 

RouteClass2_po 27.5757 <.0001 

oneway_po 17.0930 0.0007 

 

Thus, variables including time period from 6 am to 9 am, the number of through lanes, 

median household income, total households, total families, suggested bike routes, US routes, 

and one-way road violate the PO assumption and have different effects across different 

levels.  

The PPO model estimation results and the fit statistics are presented in Table 5.6 and Table 

5.7.  

Table 5.6  Partial Proportional Odds Model Estimation Results 

Analysis of Maximum Likelihood Estimates 

Parameter Level Estimate Standard Error Wald Chi-Square Pr > ChiSq 

Intercept 5 2.9121 2.1919 1.7651 0.1840 

Intercept 4 8.2183 1.2527 43.0387 <.0001 

Intercept 3 9.9807 5.1830 3.7081 0.0541 

Intercept 2 10.7126 1.5216 49.5631 <.0001 

Weekday   -7.0154 1.2122 33.4937 <.0001 

Hour_1 5 -0.2021 0.1664 1.4750 0.2246 
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Analysis of Maximum Likelihood Estimates 

Parameter Level Estimate Standard Error Wald Chi-Square Pr > ChiSq 

Hour_1 4 3.1647 0.5676 31.0867 <.0001 

Hour_1 3 0.3418 1.7064 0.0401 0.8412 

Hour_1 2 -0.0473 2.3269 0.0004 0.9838 

Hour_3   1.7205 0.1034 276.6263 <.0001 

ThruLaneCo 5 0.5160 0.0711 52.7303 <.0001 

ThruLaneCo 4 -0.2532 0.2544 0.9905 0.3196 

ThruLaneCo 3 -0.1234 0.4373 0.0796 0.7778 

ThruLaneCo 2 -0.5763 1.2314 0.2190 0.6398 

MEDHINC_CY 5 0.000031 2.66E-6 138.3050 <.0001 

MEDHINC_CY 4 0.000034 8.519E-6 15.7006 <.0001 

MEDHINC_CY 3 0.000154 0.000022 50.5355 <.0001 

MEDHINC_CY 2 0.000109 0.000035 9.8945 0.0017 

Total_Hous 5 0.00105 0.000334 9.8621 0.0017 

Total_Hous 4 0.00859 0.00280 9.4126 0.0022 

Total_Hous 3 0.0277 0.00534 26.9469 <.0001 

Total_Hous 2 0.0373 0.0206 3.2672 0.0707 

TotalFamil 5 -0.00120 0.000458 6.8452 0.0089 

TotalFamil 4 -0.0122 0.00377 10.4502 0.0012 

TotalFamil 3 -0.0389 0.00617 39.7655 <.0001 

TotalFamil 2 -0.0530 0.0253 4.3881 0.0362 

Slope   -0.0575 0.00891 41.5729 <.0001 

B_signedbi   -1.0671 0.1841 33.6052 <.0001 

B_suggeste 5 2.8458 0.9343 9.2777 0.0023 

B_suggeste 4 2.8330 1.1958 5.6128 0.0178 

B_suggeste 3 -3.4416 1.9230 3.2029 0.0735 

B_suggeste 2 -0.4743 2.3583 0.0404 0.8406 

B_suggest0   -4.0556 0.9381 18.6881 <.0001 

B_greenway   3.5327 1.4672 5.7973 0.0161 

RouteClass2 5 1.4188 0.2791 25.8462 <.0001 
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Analysis of Maximum Likelihood Estimates 

Parameter Level Estimate Standard Error Wald Chi-Square Pr > ChiSq 

RouteClass2 4 -3.7311 1.2443 8.9915 0.0027 

RouteClass2 3 1.8386 2.2886 0.6454 0.4218 

RouteClass2 2 0.3602 2.9464 0.0149 0.9027 

Oneway 5 0.8081 0.1259 41.1903 <.0001 

Oneway 4 3.4399 0.8487 16.4278 <.0001 

Oneway 3 5.2436 1.3215 15.7451 <.0001 

Oneway 2 1.1925 3.5373 0.1136 0.7360 

 

Table 5.7  Model Fit Statistics 

Criterion Intercept Only Intercept and Covariates 

AIC 7480.648 5521.322 

SC 7522.162 5957.225 

-2 Log L 7472.648 5437.322 

 

Based on the PPO model estimation results presented in Table 5.6, variables that satisfy the 

PO assumption including weekday, time period from 15:00 to 17:59, slope, signed bike 

lanes, suggested bike routes with low comfort, and greenways remain the same interpretation 

as the previous developed ORL model. Other variables seem to have different effects across 

the outcomes. The detailed model interpretation and model comparison will be presented in 

Section 5.6.  

The model fit statistics provided in Table 5.7 indicate that the -2 LogL for the PPO model is 

less than that of the ORL model and is less than the constant-only model. It means the PPO 

model has a better fitness for the level of bicycle counts. To better examine the goodness of 

fit for this PPO model, the likelihood ratio index ρ2 is utilized and presented in the following 

equation: 

𝜌2 = 1 −
𝐿𝐿(�̂�)

𝐿𝐿(𝑐)
                                                        Eq. (5) 

where 𝐿𝐿(�̂�) is the log-likelihood value at convergence and 𝐿𝐿(𝑐) represents the log-

likelihood value for constant-only model. Based on the results presented in Table 5.7, the 

likelihood ratio index ρ2 is 0.27. According to Train (2009)’s research study, a better model 

is associated with a higher value of ρ2, and it is good enough to have ρ2 from 0.2 to 0.4 in 

real world case studies. Therefore, it can be concluded that the PPO model is good enough to 

analyze the link-based route choice behavior for the Strava users in the City of Charlotte.  
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5.4 Multinomial Logit Model 

5.4.1 MNL Model Structure 

The multinomial logit model developed in this section is used to analyze the link-based 

bicyclist route choice behavior. The MNL model is usually based on the random utility 

theory (Train, 2009). It assumes that the alternative which yields the maximum utility is 

always selected. The utility function of the MNL model comprises an observed utility and an 

unobserved error term, which are shown in Equation (1). 

  in in inU V ε= +
                                                                 Eq. (6) 

where Uin is the utility function of the level of bicycle counts i for the road segment n, Vin is 

the observed utility of level i for the segment n, εin is the unobserved error term of level i for 

the segment n. Vin is usually taken as a linear utility function as shown in Equation (7). 

0 1

N

in k inkk
V β β X

=
= +                                                           Eq. (7) 

where Xink is the kth attribute variable of level of bicycle counts i for road segment n, N is the 

total number of the attributes, β0 is the constant term, and βk is the coefficient of the kth 

attribute variable.  

It is assumed that ε conforms to a Gumbel distribution, and attributes are independent of each 

other. Then the probability of the level of bicycle counts for each road segment for this 

research study can be derived as follows: 
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                                                                 Eq. (8) 

5.4.2 MNL Model Results 

The MNL model estimation result is presented in Table 5.8, in which the parameter estimates 

are shown for each level of the bicycle counts. One category is selected as the base case for 

this MNL model which is the low level of the bicycle counts. Variables that do not have 

significant impacts on the bicycle counts at 0.05 level are removed from the model utilizing 

the backward selection method.  

Table 5.8  Multinomial Logit Model Estimation Results 

Parameter Estimates 

Parameter Level  Estimate Standard Error t Value Approx Pr > |t| 

Constant2 2 2.3112 0.4306 5.37 <.0001 

Constant3 3 -2.4150 1.0291 -2.35 0.0189 

Constant4 4 5.9278 0.5980 9.91 <.0001 
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Parameter Estimates 

Parameter Level  Estimate Standard Error t Value Approx Pr > |t| 

Constant5 5 6.8923 0.7711 8.94 <.0001 

Weekday 5 -4.1488 0.3084 -13.45 <.0001 

Hour_2 2 -1.7464 0.4134 -4.22 <.0001 

Hour_2 3 -1.4990 0.5230 -2.87 0.0042 

Hour_2 5 1.2087 0.5109 2.37 0.0180 

Hour_3 5 1.8764 0.4731 3.97 <.0001 

Hour_4 4 -3.8902 0.4753 -8.19 <.0001 

MPLength 5 1.5708 0.4601 3.41 0.0006 

ThruLaneCo 5 0.5906 0.0775 7.62 <.0001 

TOTPOP_CY 3 0.000278 0.000121 2.31 0.0211 

MEDHINC_CY 3 0.0000402 7.6282E-6 5.27 <.0001 

MEDHINC_CY 5 0.0000360 2.7568E-6 13.06 <.0001 

Total_hous 4 0.005706 0.001417 4.03 <.0001 

Total_hous 5 0.006635 0.001381 4.81 <.0001 

TotalFamil 4 -0.007300 0.001749 -4.17 <.0001 

TotalFamil 5 -0.008146 0.001691 -4.82 <.0001 

Slope 4 0.0477 0.009090 5.25 <.0001 

B_suggest0 4 1.1859 0.1312 9.04 <.0001 

RouteClass2 4 -2.2344 0.3437 -6.50 <.0001 

RouteClass4 5 0.4541 0.1313 3.46 0.0005 

oneway 5 1.0411 0.1432 7.27 <.0001 

 

According to the MNL model estimation results presented in Table 5.8. Variables that have 

significant impacts on bicycle counts contain weekday, time period from 9:00 to 14:59, time 

period from 15:00 to 17:59, time period from 18:00 to 19:59, the length of segment, the 

number of through lanes, total population, median household income, total households, total 

families, slope, suggested bike routes with low comfort, US route, secondary route, and one-

way road. The explanatory variables kept in the MNL model are similar to the ORL and PPO 

model but not exactly the same. The detailed model result interpretation and comparison will 

be presented in Section 5.6. 
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The MNL model fit summary is shown in Table 5.9. From the table, it can be seen that the 

log-likelihood value at convergence is -2774. Therefore, -2 LogL is calculated which equals 

to 5548. This value will be used for the model comparison in Section 5.6. 

Table 5.9  Model Fit Summary 

Number of Observations 237673 

Number of Cases 1188365 

Log Likelihood -2774 

Log Likelihood (LogL(c)) -3736 

AIC 5596 

Schwarz Criterion 5845 

5.5 Mixed Logit Model 

The mixed logit model is different from the multinomial logit model because it allows 

explanatory variables to affect the mean of the random parameter distribution (Bhat 1998, Revelt 

and Train 1998, Bhat 2000, McFadden and Train 2000, Hensher and Greene 2003) and it can 

address the unobserved heterogeneity. Similar to MNL model, the linear utility function of the 

mixed logit model is shown in the following equation: 

in in in inU X = +
                                                          Eq. (9) 

where Uin denotes the utility function of the level of bicycle counts i on each road 

segment n, βin means a vector of coefficient estimates which are allowed to vary, Xin represents a 

vector of explanatory variables which affect the level of bicycle counts, and εin is the error term.  

According to the research conducted by Train (2009), the mixed logit model structure is 

shown in the following equation: 
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exp( )
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= 


                                        Eq. (10) 

where f(β|φ) is the probability density function of β, and ϕ represents the parameter 

vector that shows the mean and variance of the density function. The distribution of β can be 

flexible or fixed, and can be any (e.g., normal, lognormal, uniform or triangular) distribution 

(Train 2009). In this research, the normal distribution is selected. If all the parameters are fixed, 

the mixed logit model will collapse into a simple multinomial logit model.  

The MXL model is developed based on the MNL model. Subsequently, all variables in 

multinomial logit models are assumed to be randomly distributed at first and normal distribution 

is employed for all the variables in the MXL model. Then, a backward selection process is 

applied to determine the normally distributed parameters in the MXL model. Parameters will be 



60 

fixed if the standard deviation is not significantly different from zero at a level of significance of 

0.5. 200 Halton draws are utilized during the simulation-based model estimation process. It is 

verified by some scholars that 200 Halton draws are sufficient and accurate for mixed logit 

model development (e.g., Koppelman et al. 2003). However, the number of observations 

(237673) is extremely large for the estimation of MXL model which is not time efficient. 

Therefore, the peak hour data are selected to analyze the link-based route choice behavior and 

the MXL models will be developed in Section 5.7.  

5.6 Model Comparison 

This section compares the results of ORL, PPO, and MNL models developed in the 

previous sections. Indicators utilized for the model comparison include -2Log-likelihood, the 

Akaike’s information criterion (AIC), the Bayesian information criterion (BIC), and likelihood 

ratio index ρ2.  

5.6.1 Indicators for Model Comparison 

The most commonly used indicators for model comparison are -2Log-likelihood, AIC, BIC, 

and ρ2. To compare the models with same structure (e.g., ORL and PPO), all the indicators 

can be used. However, to compare models with different structures, it is not appropriate to 

utilize the likelihood values.  

The values of AIC and BIC are calculated with the following equations: 

AIC = 2p – 2LL                                                      Eq. (11) 

BIC = pln(Q) – 2LL                                                    Eq. (12) 

where p represents the number of parameters in the model, Q is the number of observations 

and LL denotes the log-likelihood value of the model. 

Therefore, the four indicators for each model developed in the previous sections are 

presented in Table 5.10.  

Table 5.10  Indicators for Model Comparison 

Model No. of Obs (Q) No. of Vars. (p) -2LogL AIC BIC 𝛒𝟐 

ORL 237673 23 5743 5789 6028 0.2315 

PPO 237673 42 5437 5521 5957 0.2724 

MNL 237673 24 5548 5596 5845 0.2575 

 

Comparing the traditional ORL model to PPO model, the PPO has a smaller value of -2LogL 

than that of the ORL model, which indicates that PPO model outperforms the ORL model for 

fitting the bicycle count data in the City of Charlotte. To compare the three models with 

different structures, AIC and BIC values are utilized. Based on the values of AIC, PPO has 
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the smallest value among the three models, which reveals the best fitness of PPO model for 

this data. However, the BIC value of PPO is not the smallest. According to the BIC values, 

the MNL model performs better than PPO model, and PPO model is better than ORL model. 

The implication derived from the value of ρ2 demonstrates that the PPO model with the 

largest value performs better than the other two models. The reason that the BIC value of 

PPO model is larger than MNL’s can be interpreted that PPO model has more estimated 

parameters than MNL model. The trade-off between better fitness of the model and the 

number of variables should be carefully considered and examined. In this research study, 

with the consideration of the four indicators, conclusion can be provided that PPO model fits 

better for this link-based route choice behavior analysis.  

5.6.2 Model Result Comparison 

Based on the model estimation results in Table 5.3, Table 5.6, and Table 5.8, variables that 

have significant impacts on the link-based cyclist route choice behavior are identified and 

interpreted for all three models including ORL model, PPO model, and MNL model. The 

detailed analysis is provided as follows: 

1. Temporal variables: 

The cycling behavior varies with different time in terms of weekday/weekend and time of 

day. According to the model estimation results of three models, weekdays have a 

negative impact on the bicycle counts for each road segment especially for the category 

of high-level bicycle counts. It can be interpreted that Strava users in the City of 

Charlotte prefer to bike on weekends. And on weekdays, the probability of the high-level 

bicycle count occurrence will decrease. The conclusion of this result is probably related 

to the high proportion of the non-commute trips in the Strava dataset. Different time of 

day will have different impacts on the bicycle counts since the link-based route choice 

varies with the change of time. The time period from 06:00 to 17:59 has a positive overall 

impact on the bicycle counts, while time period from 18:00 to 19:59 has a negative 

impact on the bicycle counts. To be specific, time period from 06:00 to 08:59 has a 

positive impact on average-high level. Time period from 09:00 to 14:59 has a negative 

impact on the low-average and average level, while it has a positive impact on the high 

level of bicycle counts. Time period from 15:00 to 17:59 has a positive impact on the 

high level of bicycle counts. And time period from 18:00 to 19:59 has a negative impact 

on average-high level. To conclude, cyclists prefer to bike during daytime, and time 

period from 06:00 to 17:59 is associated with high likelihood of above average bicycle 

counts. Researchers can assume that: First, the light condition is better during the 

daytime. Second, cyclists choose to bike during daytime considering the safety issue.  

 

2. Road characteristics: 

Road characteristics are highly related to the cycling conditions which make the road 

characteristic factors significantly affect the link-based route choice. The explanatory 

variables that have a significant impact on the level of bicycle counts include the length 

of the road segment, number of through lanes, Interstate, US route, NC route, secondary 
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route, and one-way road. From the model estimation results, the length of the road 

segment has a positive impact on the bicycle counts. In other words, cyclists prefer to 

bike on long-distance road segments. This is probably because cyclists are willing to bike 

on roads with bicycle facilities (e.g., greenways) which tend to be long-distance road 

segments. The number of through lanes have a positive impact on the high-level bicycle 

counts for each road segment. It can be interpreted that cyclists tend to select road 

segments with greater number of through lanes as a part of their cycling routes. Interstate 

and NC route have a negative impact on the bicycle counts. In addition, US route will 

positively affect the high-level bicycle counts, however, negatively influence the average-

high level. Secondary routes are associated with high-level bicycle counts. Therefore, it 

can be concluded that more bicycle counts are likely to occur on US routes and secondary 

routes. One-way road segments have a positive impact on the bicycle counts especially 

for high-level category. This result is probably related to the cycling preference in the 

uptown area where numerous one-way roads exist.  

 

3. Sociodemographic characteristics: 

Several sociodemographic characteristics have different impacts on the level of bicycle 

counts on each road segment in the City of Charlotte. According to the model estimation 

results, explanatory variables that have significant impacts on bicycle counts contain total 

population, median age, median household income, total household, and total families. 

Based on the MNL model estimation results, the total population in the certain areas 

(census blocks) has a positive impact on the average level of the bicycle counts which 

indicates that a large population will be associated with average level of the bicycle 

counts. Locations with higher median age have a positive impact on bicycle counts. It can 

be interpreted that cyclists prefer to bike in the area with higher median age. The median 

household income factor may affect the bicycle counts differently across different levels. 

To be specific, the median household income has a positive impact on the average and 

above average levels, while it has a negative impact on the low-average level. An 

assumption can be made that the uptown area has higher median income and the bicycle 

counts in the uptown location are higher since bicyclists prefer to bike in the center city 

area. Interestingly, the total households and total families affect the level of bicycle 

counts differently. The total households affect the higher levels of bicycle counts 

positively, while the total families affect the higher levels of bicycle counts negatively. It 

can be assumed that cyclists prefer to select locations with more rental apartments and 

less family house neighborhood.  

 

4. Geometry: 

The slope is one of the impact factors that affect the bicycle counts significantly. In the 

three discrete choice models, this variable is examined to discover the correlation 

between the probability of selecting the road segment as a part of the cycling route and 
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the slope. The model estimation results reveal that slope has a negative impact on the 

level of bicycle counts on each road segment. It is not hard to understand that bicyclists 

prefer to bike on flat segments instead of steep segments.  

 

5. Bicycle facilities: 

Bicycle facilities are the critical consideration for cycling activities. Bicyclists may have 

different preferences for different bicycle facilities which are able to provide higher 

cycling safety. Based on the model estimation results, bike facilities including signed 

bike lanes, suggested bike routes (both regular and low comfort), and greenways will 

have a significant impact on the bicycle counts. Signed bike lanes will affect the level of 

bicycle counts negatively, while greenways will increase the likelihood of higher level of 

bicycle counts. The suggested bike routes with low comfort will have a negative impact 

on bicycle count levels expect for average-high level. And suggested bike routes have a 

positive impact on bicycle counts especially for the high-level category. It can be 

interpreted that greenways and suggested bike routes may have a better road condition 

compared to the other types of the bicycle facilities.  

5.7 Modeling Link-based Route Choice for Different Time Periods 

Based on the methodology described in Section 5.6, two mixed logit models are 

developed to analyze the link-based route choice for different time periods (am peak hours and 

pm peak hours). The model estimation procedure is conducted in SAS 9.4. The MXL logit 

models developed in this section are based on the MNL models built for different time periods. 

The MXL model developed for AM peak hours collapses into a MNL model. Therefore, the 

indicators for different time periods are presented in Table 5.11.  

Table 5.11  Indicators for Different Time Periods 

Time Periods Model No. of Obs (Q) No. of Vars. (p) -2LogL AIC BIC 𝛒𝟐 

AM Peak Hours MNL 43444 24 798.71 846.71 1055.01 0.1632 

PM Peak Hours MXL 48447 13 1789.96 1815.96 1930.21 0.1690 

 

In Section 5.7.1 and Section 5.7.2, the MNL model and the MXL for AM peak hours and 

PM peak hours respectively are presented. The analysis of the model estimation results 

demonstrates the impacts of different explanatory variables on the link-based route choice 

behavior for both peak hours.  

5.7.1 AM Peak Hours 

To analyze the link-based cyclist route choice behavior for AM peak hours, a MXL model is 

developed with low level of bicycle counts selected as the base. However, standard 

deviations of all the levels in the MXL model are not significantly different from zero at the 
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0.05 level. Therefore, this MXL model collapses into a MNL model. And the MNL model 

estimation results are shown in Table 5.12. 

Table 5.12  MNL Model Estimation Results for AM Peak Hours 

Parameter Estimates 

Parameter Level Estimate Standard Error t Value Approx Pr > |t| 

Constant 2 4.0770 0.9704 4.20 <.0001 

Constant 3 -11.5363 2.6558 -4.34 <.0001 

Constant 4 -1.3841 3.0688 -0.45 0.6520 

Constant 5 1.3761 1.8488 0.74 0.4567 

Weekday 5 -1.8047 0.4723 -3.82 0.0001 

MPLength 2 -12.1937 4.4586 -2.73 0.0062 

SpeedLimit 4 -0.1408 0.0620 -2.27 0.0232 

ThruLaneCo 3 2.1545 0.8328 2.59 0.0097 

ThruLaneCo 4 2.3905 0.6926 3.45 0.0006 

ThruLaneCo 5 2.0612 0.6235 3.31 0.0009 

MEDHINC_CY 3 0.0000820 0.0000186 4.40 <.0001 

MEDHINC_CY 4 0.0000422 0.0000156 2.70 0.0069 

MEDHINC_CY 5 0.0000667 0.0000142 4.70 <.0001 

Total_hous 2 -0.002737 0.001125 -2.43 0.0150 

Total_hous 5 0.003217 0.001249 2.58 0.0100 

TotalFamil 5 -0.005797 0.001417 -4.09 <.0001 

FamilyPove 3 6.1878 2.8829 2.15 0.0318 

FamilyPove 5 6.1456 1.7811 3.45 0.0006 

B_bikelane 2 1.9884 0.8153 2.44 0.0147 

B_bikelane 3 3.3529 0.8581 3.91 <.0001 

B_greenway 2 3.4877 1.0441 3.34 0.0008 

oneway 3 3.4908 1.0794 3.23 0.0012 

oneway 4 2.3318 0.9354 2.49 0.0127 

oneway 5 2.4732 0.7732 3.20 0.0014 

 

1. Temporal variables: 
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Similar to the MNL model developed for the whole dataset, weekday has a negative 

impact on the high-level bicycle counts on each road segment. Same results can be 

concluded that the cyclists in the City of Charlotte prefer to bike on weekends. Weekdays 

will probably decrease the likelihood of the occurrence of high-level bicycle counts. 

 

2. Road characteristics: 

The explanatory variables that have significant impacts on the level of bicycle counts are 

different from the variables in the MNL developed with the whole dataset. According to 

the model estimation results presented in Table 5.12, the road characteristic variables that 

have a significant impact on the level of bicycle counts contain the length of road 

segment, speed limit, number of through lanes, and one-way road. The length of the road 

segment has a negative impact on the low-average level of bicycle counts which indicates 

that low-average level of bicycle counts is likely to be associated with shorter road 

segments. The posted speed limit on a road segment will affect the bicycle count level 

(high-average) negatively. It is not hard to imagine cyclists prefer to bike on roads with a 

lower speed limit. Greater number of through lanes increases the likelihood of high level 

of bicycle counts (average and above). It can be interpreted that cyclists tend to select 

roads with more through lanes. In addition, the one-way road remains to have a positive 

impact on the high level of bicycle counts (average and above) which demonstrates that 

cyclists prefer to bike on one-way roads. 

 

3. Sociodemographic characteristics:  

Changes are also found in the sociodemographic variables that have significant impacts 

on the level of bicycle counts for AM peak hours. Based on the results represented in 

Table 5.12, median household income, total households, total families, and family 

poverty rate will affect the bicycle counts significantly. The median household income 

has a positive impact on the average and above average levels which indicates that 

cyclists prefer to bike in the areas with higher household income. This result is consistent 

with the interpretation of the variable from models based on the whole dataset. Total 

households have a negative impact on low-average level of bicycle counts, while this 

variable affects the high level positively. This result reveals that the area with more 

households increases the likelihood of high-level bicycle counts and decreases the 

probability of low-average level. The impact of the total families remains the same as the 

MNL model developed using the whole dataset. The family poverty rate in this MNL is 

identified to have a positive impact on both average and high level of bicycle counts 

which means that cyclists prefer to bike at the locations with high poverty rates.  

 

4. Bicycle facilities:  

The bicycle facilities that have significant impacts on bicycle counts are different from 

the previous MNL model. Only bike lanes and greenways will affect the level of bicycle 
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counts significantly. They both have positive impact on the low-average or average level. 

It can be interpreted that bike lanes and greenways increase the likelihood of low-average 

or average level of bicycle counts. It can be assumed that a lot of cycling trips occurred 

during AM peak hours are in the center city where few cyclists bike on these two types of 

bicycle facilities.  

5.7.2 PM Peak Hours 

To explore the difference of impact factors between the cycling activities occurred during 

AM peak hours and PM peak hours, the MXL model is developed and the model estimation 

results are presented in Table 5.13. 

Table 5.13  MXL Model Estimation Results for PM Peak Hours 

Parameter Estimates 

Parameter Level Estimate Standard Error t Value Approx Pr > |t| 

Constant 2 1.0470 0.5182 2.02 0.0433 

Constant 3 -1.5170 0.8442 -1.80 0.0723 

Constant 4 0.1042 1.0485 0.10 0.9209 

Constant 5 8.8208 0.7556 11.67 <.0001 

SpeedLimit 4 -0.0518 0.0159 -3.25 0.0012 

TOTPOP_CY 5 -0.000402 0.000135 -2.97 0.0030 

MEDAGE_CY 4 0.0765 0.0253 3.02 0.0025 

MEDHINC_CY 4 -0.000104 0.0000117 -8.86 <.0001 

Total_hous_M 3 0.001810 0.002016 0.90 0.3691 

Total_hous_S 3 -0.002175 0.000682 -3.19 0.0014 

Total_hous 4 0.004110 0.001235 3.33 0.0009 

Total_hous 5 0.005762 0.000981 5.87 <.0001 

Slope 4 -0.0799 0.0216 -3.70 0.0002 

 

Compared to the MNL developed for the cycling behavior during AM peak hours, the 

explanatory variables that remain to have significant impacts on the bicycle counts during 

PM peak hours include speed limit, median household income, and total households. In 

addition, different from the impact factors for cycling behavior during AM peak hours, total 

population, median age, and slope are found to affect the level of bicycle counts significantly 

during PM peak hours. 

Speed limit still has a negative impact on the level of bicycle counts which is consistent with 

the results of cycling behavior during AM peak hours. Different link-based route choice 

behavior is found in terms of the impact of total population. During PM peak hours, cyclists 
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prefer to bike on roads located in the area with low population which is opposite to the 

results concluded from the models based on the whole dataset. The median age variable has a 

positive impact on the high-average level which remains the same as what was mentioned 

before. However, median household income has a negative impact on the average-high level 

of bicycle counts which indicates that cyclists prefer to bike in the area with low household 

income. Total households still have a positive impact on average and above average levels, 

and slope still remains a negative impact on high-average level.  

5.8 Summary 

This chapter developed several discrete choice models including ordered logit model, 

partial proportional model, multinomial logit model, and mixed logit model to analyze the link-

based cyclist route choice behavior. Model comparison is conducted to select the best model 

structure for this research study. The link-based route choice behavior of different time periods 

including AM peak hours and PM peak hours is analyzed based on the mixed logit model. 

Impact factors that are associated with different levels of bicycle counts in the City of Charlotte 

are identified.  
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Chapter 6.  Methods for Analyzing Path-based Cyclist Route Choice 

6.1 Introduction 

This Chapter provides a method to analyze the path-based cyclist route choice. The 

labeling method is selected for the choice set generation procedure which is the preparation of 

cyclist route choice analysis. The structure of Path Size Logit model is presented as a guidance 

for modeling path-based route choice behavior. The rest of this Chapter is organized as follows. 

Section 6.2 explains the choice set generation method. Section 6.3 introduces the Path Size Logit 

model. Finally, Section 6.4 concludes the chapter with a summary.  

6.2 Choice Set Generation 

There are several choice set generation methods that have been utilized as the preparation 

for the cyclist route choice analysis. One of the most prevalent methods is the labeled route 

method. It can be conducted in the ArcGIS 10.4 by the Network Analyst extension. The 

alternative routes from the selected origin to the destination are generated based on the maximum 

or minimum values of certain attributes. For the unique OD pair, the alternatives are comprised 

of the created nonchosen alternatives and the route that is actually chosen by the specific cyclist.  

In this study, the alternative routes for the pair of origin and destination are generated 

following the criteria listed below: 

1. Minimize the distance of the cycling route from origin to the destination; 

2. Maximize the usage of bicycle facilities along the cycling route from origin to the 

destination; 

3. Minimize the number of intersections for the cycling route from origin to the 

destination; 

4. Minimize the proportion of one-way road segments along the cycling route from 

origin to the destination; 

An example of the generation method for shortest cycling path from origin to destination 

is presented in the following figure.  
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Figure 6.1: An Example of Choice Set Generation Procedure 

 

6.3 Path Size Logit Model 

To estimate models based on the generated route alternatives, some types of the discrete 

choice models can be utilized. The basic model for analyzing the path-based route choice 

behavior of cyclists is the multinomial logit model mentioned in the previous section. A classical 

conditional maximum likelihood estimation method can be used for developing the MNL model.  

In this path-based route choice research study, the probability of a cyclist choosing the 

alternative route i from the available alternative routes in choice set Cn is presented as follows: 

𝑃(𝑖|𝐶𝑛) =
exp (𝑉𝑖𝑛)

∑ exp (𝑉𝑗𝑛)𝑗∈𝐶𝑛

                                                Eq. (13) 

where i denotes the chosen alternative route, j represents the alternative routes in choice 

set Cn, Vin/Vjn are the deterministic utility of alternative route i/j for individual n. 

However, the limitation of MNL model is revealed in terms of the independence of 

irrelevant alternatives (IIA) property. In this situation, the provided alternative routes in the 

choice set are required to be mutually exclusive. In other words, overlapping routes are not 

allowed to exist while using MNL model to estimate the route choice. Neglecting this IIA 

property will end with overestimating the overlapping routes. 
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To release this restriction, an appropriate correction should be introduced for the utilities 

of alternative routes to account for the correlation. A path size (PS) factor that corrects the 

utilities can reflect the correlation among all routes. The PS factor is presented in the following 

equation:  

𝑃𝑆𝑖𝑛 = ∑
𝐿𝑎

𝐿𝑖

1

∑ (
𝐿𝑖
𝐿𝑗
)𝛾𝛿𝑎𝑗𝑗∈𝐶𝑛

𝑎∈𝑇𝑖
                                          Eq. (14) 

where La denotes the length of link a, Li represents the length of route i, Ti demonstrates 

the set of links in route i, 𝛿𝑎𝑗 equals one if link a is used in route j, otherwise, 𝛿𝑎𝑗 equals zero, γ 

indicates the long-path correction factor. For most cycling cases, this factor is assumed to be 

zero. 

The PS attribute is included in the deterministic utility of the route alternatives and then 

the Path Size Logit (PSL) model is developed. Thus, the probability of alternative route i 

selected by a cyclist from the choice set Cn is presented in the following equation:  

𝑃(𝑖|𝐶𝑛) =
exp (𝑉𝑖𝑛+ln (𝑃𝑆𝑖𝑛))

∑ exp (𝑉𝑗𝑛+ln (𝑃𝑆𝑖𝑛))𝑗∈𝐶𝑛

                                       Eq. (15) 

From the PSL model, it can be seen that the utility of each alternative route is changed. 

The new form of the utility function of each route is presented as follow: 

𝑈𝑖 = 𝛽𝑋𝑖 + 𝛽𝑃𝑆 × ln (𝑃𝑆)                                           Eq. (13) 

where Xi is the vector of attribute variables of route i, and β is the coefficients that need to 

be estimated. 

Because the limitation of the Strava data, the exact cycling trajectory information cannot 

be obtained for this path-based route choice analysis. Only aggregated data and the moving 

direction within designed polygons can be extracted. Therefore, for further study on the path-

based route choice, cycling trajectories are essential for model development and research 

analysis.  

6.4 Summary 

This chapter provides the methods for analyzing cyclists’ path-based route choice 

behavior. The labeled route method is selected to demonstrate the choice set generation 

procedure for this research study. An example of choice set generation conducted in ArcGIS 10.4 

is presented. Based on the generated choice set, the PS factor is introduced in the MNL model 

for the correction, and a PSL model structure is presented to give a guidance for the route choice 

behavior analysis.  
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Chapter 7.  Summary and Conclusions 

7.1 Introduction 

Cycling has gained more attention from the citizens and planners recently, since it can 

provide benefits not only for the society but also for the environment. By promoting cycling 

especially for short-distance trips, Charlotte has been making every effort to become a bike-

friendly city. As an ideal travel mode, cycling is able to improve public health, reduce energy 

consumption, and alleviate air pollution, etc.  

To increase the mode share of cycling, research studies are needed to conduct in order to 

explore the impacts on both link-based and path-based route choice behavior. One of the most 

critical issues that need to be considered for the route choice analysis is the data collection 

method. Traditional data collection methods including travel surveys and data from manual 

count machines can be time-consuming and expensive. The novel crowdsourced data address the 

issues brought by traditional data collection methods and provide the temporal and spatial 

information of cycling to bridge the gap.  

Based on the crowdsourced bicycle data collected from the Strava application, this 

research study is conducted to analyze the link-based cyclist route choice behavior in the City of 

Charlotte and to present a method for the future investigation on path-based route choice 

behavior.  

The primary objective of this research study is to model the link-based route choice 

behavior for the cyclists in the City of Charlotte. Different discrete choice models are developed 

including ORL model, PPO model, MNL model, and MXL model. A model comparison is 

conducted to identify the best model structure for this research study. MXL model and MNL 

model are utilized to compare the cycling behavior for different time periods. The impact of 

explanatory variables in terms of temporal variables, road characteristics, sociodemographic 

information, geometry, and bike facilities are analyzed. In addition, a method is provided for the 

future studies on path-based route choice behavior. The labeled route method is selected for the 

choice set generation procedure. An example of the choice set generation conducted using 

ArcGIS 10.4 is provided for the preparation of the route choice analysis. Based on the previous 

research study, a PSL model is proposed to analyze the path-based route choice behavior. 

Finally, the limitation of the crowdsourced bicycle data collected from Strava is discussed.  

The rest of this chapter is organized as follows. Section 7.2 provides a brief review of the 

methods used to analyze the link-based route choice behavior for the cyclists in the City of 

Charlotte. The model estimation results are concluded in this section, and the model comparison 

result indicating the best model structure for this research study is summarized. Different link-

based route choice behavior for cycling during both AM and PM hours are identified. Section 7.3 

discusses the limitation of this research study and provides the future research directions in terms 

of the path-based route choice behavior analysis using PSL model.  
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7.2 Summary and Conclusions 

As mentioned before, a comprehensive literature review regarding the concept of 

crowdsourcing, the introduction of crowdsourced bicycle data, and the use of crowdsourced data 

for different aspects of research studies including both link-based and path-based route choice 

behavior analysis, etc. is conducted to understand the usage of crowdsourced bicycle data and the 

modeling methods for route choice in previous research studies.  

Based on the crowdsourced data collected from Strava, the descriptive analyses are 

conducted in terms of the demographic information on Strava users, cycling activities for 

different trip purposes, the cyclist counts on each road segment in the City of Charlotte for each 

month of year, weekdays/weekends, and time of day, the origin and destination of cycling trips 

for the most popular one, and the total cyclist counts in each origin/destination polygon for 

different trip purposes, and on weekdays and weekends, etc.  

Several discrete choice models are developed to analyze the link-based cyclist route 

choice behavior in the City of Charlotte. Models including ORL model, PPO model, MNL 

model, and MXL model are compared to identify the best fit for this Strava dataset. According to 

the model estimation results, variables including weekday, total family, slope, signed bike lanes, 

suggested bike routes with low comfort, interstate route, and NC route are found to have a 

negative impact on the level of bicycle counts, while other variables which are time period from 

6:00 to 17:59, segment length, number of through lanes, median age, median household income, 

total household, suggested bike routes, greenway, US route, and one-way road are identified to 

have a positive impact on the level of bicycle counts in the ORL model. In the PPO model, 

variables including time period from 6 am to 9 am, the number of through lanes, median 

household income, total households, total families, suggested bike routes, US routes, and one-

way road violate the PO assumption and have different effects across different levels. Variables 

that satisfy the PO assumption including weekday, time period from 15:00 to 17:59, slope, 

signed bike lanes, suggested bike routes with low comfort, and greenways have the same 

interpretation as the ORL model. The explanatory variables that have a significant impact on 

bicycle counts in MNL model contain weekday, time period from 9:00 to 14:59, time period 

from 15:00 to 17:59, time period from 18:00 to 19:59, the length of segment, the number of 

through lanes, total population, median household income, total households, total families, slope, 

suggested bike routes with low comfort, US route, secondary route, and one-way road which are 

similar to the ORL and PPO model. By calculating the indicators (-2LogL, AIC, BIC, and ρ2) for 

model comparison, PPO model is determined to be best model structure for this link-based route 

choice behavior analysis. To explore the different route choice behavior for both AM and PM 

peak hours, two MXL models are developed. Impact factors that are associated with different 

levels of bicycle counts in the City of Charlotte are identified. 

7.3 Directions for Future Research 

This section summarizes the limitation of this research study and provides the directions 

for the future research study. The limitations of this research study are listed as follows: 

1. Strava data limitations: 
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(1) The crowdsourced bicycle data collected from Strava only contain a large portion 

of the cyclists in the City of Charlotte. The models developed based on this 

dataset only reveal the cycling behavior of the Strava users in the City of 

Charlotte. The factors affecting link-based route choice may vary with different 

sources of data.  

(2) Most of the cyclists using Strava application are male cyclists accounting for 

80.49% of the total Strava users in the City of Charlotte which may lead to an 

unavoidable bias to the route choice analysis.  

(3) The majority of the cycling trips generated by Strava users are non-commute trips 

which may be different from the cycling behavior for commute trips. 

(4) The Strava data are aggregated before providing for research studies. No actual 

cycling trajectory information can be obtained for path-based route choice 

analysis.  

2. Link-based route choice models: 

(1) Some variables may have a potential impact on the link-based route choice 

behavior, such as traffic volumes. However, the traffic volume data are not 

available for this case study.  

(2) Some supporting data (e.g., roadway characteristics data) are not available for 

certain roadway segments, and thus the records with blank information are 

removed from the dataset.  

Based on the summarized limitations of this research study and the literature review on 

relevant topics, the directions for future studies are provided as follows: 

1. Other models besides ORL, PPO, MNL, and MXL models should be developed and 

tested to see the fitness for the link-based route choice. And a more comprehensive 

model comparison can be conducted based on the new models.  

2. The differences between commute trips and non-commute trips should be identified 

by modeling route choice models separately.  

3. The cycling activities occurred in various locations can be different. Comparison can 

be conducted for route choice behavior for different locations (e.g., urban or rural 

areas).  

4. Crash frequency or severity can be considered to examine their impacts on the 

cyclists’ route choice behavior. In addition, cyclist injury risk factors can be 

computed for the safety analysis. 

5. Other choice set generation methods can be utilized to compare with the labeled route 

method for the path-based route choice analysis.  
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6. Cycling trajectory data should be collected to complete the path-based route choice 

analysis. Other models (e.g., expanded path size logit model) should be used and 

compared with the PSL model.  
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	Cycling has been more and more prevalent among citizens especially in bike friendly cities where planners and policy makers have been promoting non-motorized travel mode. Compared to driving, cycling is healthier and is able to reduce energy consumption. Therefore, it is essential to analyze cycling behavior to better understand the needs of bicyclists. Since cycling behavior during different time periods can be distinctive, it is critical to discover the differences of cycling behavior in each time period.
	 
	To analyze cycling behavior, data including bicycle volume on each road segment, road characteristics, time of day, day of week are quite indispensable. The methods for data collection are diverse. In the past, traditional manual count data and travel survey data were the most commonly used ones for data collection. However, crowdsourcing is becoming more popular, since crowdsourced data can be cost effective and time saving compared to the other two data collection methods. In addition, traditional manual 
	 
	This research concentrates on the analysis of cycling behavior utilizing crowdsourced bicycle data collected from Strava in the City of Charlotte. The cycling behavior of Strava users in the City of Charlotte during different time periods is compared. From the link-based cycling behavior prospective, several discrete choice models have been developed to model the preference of roadway segments along their cycling routes during different time periods. Factors including road characteristics, bike facilities, 
	  
	  
	Chapter 1.  
	Chapter 1.  
	Introduction
	 

	1.1 Problem Statement 
	To obtain better and healthier lives, citizens are trying to spend more time on outdoor activities. And for traveling, more people prefer to select cycling for both commuting and recreational trips especially those with short distances. Cycling, as a healthier and greener non-motorized travel mode, has been encouraged by city planners and policymakers to help reduce energy consumption, decrease traffic emissions, and improve public health. However, there are several concerns for people to choose cycling ove
	One of the most useful ways to improve cycling condition is to construct bicycle facilities which can provide a safer and more comfortable cycling environment for the potential cyclists. The convenience brought by leveraging the well-constructed bicycle facilities may increase the bicycle level of service.  
	According to the Charlotte Department of Transportation (CDOT) Bicycle Program developed in 2017 (City of Charlotte Department of Transportation, 2017), the City of Charlotte has been making great efforts to become a bicycle friendly city for the past fifteen years. To promote cycling, a comprehensive bike plan has been implemented and improvements have been made to the policies. Since the first mile of bike lanes was constructed in 2001, the bike network in Charlotte has been expanding. There are more than
	To understand how to improve cycling condition and promote cycling among potential cyclists, factors need to be analyzed to examine the significant impacts on cycling behavior for both link-based route choice and path-based route choice. Therefore, data including bicycle volume on each road segment, road characteristics, sociodemographic information, temporal characteristics, etc. are essential for analyzing link-based route choice, while data including cycling trajectories and cycling route related informa
	The data collection methods for these research studies usually include three most commonly used ones which are traditional manual count data collected from the manual count machines, the travel surveys, and the crowdsourced data from the third party. Previously, most of the research efforts were conducted utilizing the first two data collection methods. But these two 
	methods can be expensive and time-consuming. The crowdsourced data, on the other hand, are timesaving and cost effective. In addition, this kind of data can provide spatial and temporal information that data collected using traditional methods cannot provide. Therefore, crowdsourced data have been widely used by researchers and many public agencies. Recently, crowdsourced data collected from smartphone applications (Strava etc.) have been prevalent among researchers since it has increased the availability o
	Crowdsourcing is an advanced data collection method. It has the advantages for researchers and practitioners to collect data from a large range of people in a time-saving and cost-efficient way. Usually, crowdsourcing involves crowd itself through an internet-based platform during an outsourcing procedure. It obtains useful information from the interested group and is utilized by scholars and planners to solve the relevant problems which can benefit the interested group back. The thought of crowdsourcing wa
	With the development of GPS enabled smartphones, it is more convenient to collect crowdsourced data from smartphone applications. The first smartphone application for cycling data collection is CycleTracks developed by San Francisco County Transportation Authority in 2009 (San Francisco County Transportation Authority, 2013). Later, based on the first smartphone application, several different applications including Strava, Cycle Atlanta, and ORcycle etc. have been developed to conduct studies for various lo
	Based on the crowdsourced data collected from the smartphone applications, multiple models can be developed which include ordered probit models, ordered logit models, partial proportional odds models, path size logit models, expanded path size logit models, recursive models, and C-logit models. These models have been adopted for bicycle travel related research studies in terms of route choice behavior analysis, bicycle volume estimation and forecasting, bicyclist injury risk and safety analysis, air polluti
	This research is intended to systematically analyze the cycling activities during different time periods for both link-based cyclist route choice and path-based cyclist route choice. Crowdsourced data utilized in this research are collected from Strava smartphone application which contain the Strava user counts on each road segment in the whole Charlotte network and the OD matrix for Strava users. To complete the link-based cyclist route choice behavior analysis, factors including road geometry, demographic
	with ArcGIS and SAS. To provide a method to guide researchers to analyze path-based cyclist route choice, a choice set generation method has been selected and a Path Size Logit model for future route choice analysis has been presented. 
	1.2 Objectives 
	The objective of this report is to analyze the cycling behavior during different time periods in the City of Charlotte using crowdsourced bicycle data collected from Strava smartphone application, and compare different cycling behavior to provide specific recommendations accordingly on what can be done to help increase bicycle volume and build a better environment for bicycle riding. Route choice models will be developed for each time period, and the differences of each model will be identified which might 
	1. To review and synthesize past experiences in cycling behavior analysis; 
	1. To review and synthesize past experiences in cycling behavior analysis; 
	1. To review and synthesize past experiences in cycling behavior analysis; 

	2. To compile the data needed for this project from all the available sources including Strava smartphone application data, roadway characteristics data, and other potential useful data for the follow-up work; 
	2. To compile the data needed for this project from all the available sources including Strava smartphone application data, roadway characteristics data, and other potential useful data for the follow-up work; 

	3. To analyze the crowdsourced bicycle data and conduct descriptive analysis; 
	3. To analyze the crowdsourced bicycle data and conduct descriptive analysis; 

	4. To develop link-based cyclist route choice models using multiple discrete choice models; 
	4. To develop link-based cyclist route choice models using multiple discrete choice models; 

	5. To identify and compare the differences of cycling behavior between various time period; 
	5. To identify and compare the differences of cycling behavior between various time period; 

	6. To provide a choice set generation method for cyclist route choice behavior analysis; 
	6. To provide a choice set generation method for cyclist route choice behavior analysis; 

	7. To present the structure of a Path Size Logit model showing the method to analyze cyclist route choice for potential future studies. 
	7. To present the structure of a Path Size Logit model showing the method to analyze cyclist route choice for potential future studies. 


	1.3 Expected Contributions 
	To better understand the factors affecting bicyclist route choice behavior during different time periods, models need to be developed for both link-based route choice analysis and path-based route choice analysis. Along that line, the expected contributions of this research can be summarized as follows: 
	1. Present a systematic method for existing research efforts based on crowdsourced bicycle data; 
	1. Present a systematic method for existing research efforts based on crowdsourced bicycle data; 
	1. Present a systematic method for existing research efforts based on crowdsourced bicycle data; 

	2. Develop several discrete choice models to analyze link-based cyclist route choice behavior and identify the best model structure for this case study, examine and compare the impact factors for different time periods; 
	2. Develop several discrete choice models to analyze link-based cyclist route choice behavior and identify the best model structure for this case study, examine and compare the impact factors for different time periods; 


	3. Provide a practical method to generate choice set for preparation of path-based route choice modeling. 
	3. Provide a practical method to generate choice set for preparation of path-based route choice modeling. 
	3. Provide a practical method to generate choice set for preparation of path-based route choice modeling. 

	4. Present the Path Size Logit model to give a method of analyzing path-based route choice for potential future studies. 
	4. Present the Path Size Logit model to give a method of analyzing path-based route choice for potential future studies. 


	1.4 Report Overview 
	The remainder of this report is organized as follows: Chapter 2 presents a comprehensive review of the state-of-the-art and state-of-the-practice on the link-based and path-based route choice behavior analysis using both traditional data collection methods and crowdsourced bicycle data. Chapter 3 discusses the bicycle count data and the OD matrix data collected from Strava application and other relevant supporting data. Chapter 4 conducts a descriptive analysis based on the data collected in Chapter 3. Chap
	Chapter 2.  
	Chapter 2.  
	Literature Review
	 

	2.1 Introduction 
	Cycling behavior has been studied for decades to provide guidance to policy makers and planners for active transportation development and management, with the support of traditional data collection methods such as travel surveys and manual counts. Nowadays, the information and communication technologies have been developed, which leads us to a new era of big data.  Numerous sources of novel data, including crowdsourced data collected from the smartphone have emerged and been utilized for the transportation 
	This chapter provides a summary of the review of previous research efforts regarding the crowdsourcing data collection method and the potential use of the crowdsourced data on relative transportation research studies, especially route choice behavior analysis. The comprehensive review will greatly help in gaining a clearer understanding of the methods of modeling cyclist route choice behavior based on crowdsourced bicycle data for future research studies.  
	The remainder of this chapter is structured as follows. Section 2.2 gives a brief introduction to the existing data collection methods including open data, big data and stated preference, revealed preference travel surveys and other traditional transportation survey methods. Section 2.3 summarizes and introduces the smartphone crowdsourcing applications and the potential use of crowdsourced bicycle data for relevant research studies. Section 2.4 reviews the link-based cyclist route choice behavior analysis 
	2.2 Data Collection Methods 
	2.2.1 Crowdsourcing 
	Crowdsourcing is an innovative method which introduce new developments for the process of data collection. With the evolving of crowdsourcing, the definition of crowdsourcing has changed over the years. It was first brought up by Howe in 2006 in his article named “The Rise of Crowdsourcing”. According to his statement, crowdsourcing is defined as follow: 
	“Crowdsourcing is the act of taking a job traditionally performed by a designated agent (usually an employee) and outsourcing it to an undefined, generally large group of people in the form of an open call.” (Howe, 2006) 
	Based on this new concept, lots of researchers who are interested in this kind of data collection method provide their own interpretations of crowdsourcing (Estellés-Arolas and González-Ladrón-de-Guevara, 2012). Usually, the definitions of crowdsourcing contain three main features that represent this data collection method including the crowd that provides critical information, the outsourcing procedure that spread out the data, and the internet-based platform that enables the accomplishment of crowdsourcin
	(1) Crowdsourcing is an online production model that help solve the problem in recent years (Brabham, 2008) 
	(1) Crowdsourcing is an online production model that help solve the problem in recent years (Brabham, 2008) 
	(1) Crowdsourcing is an online production model that help solve the problem in recent years (Brabham, 2008) 

	(2) Crowdsourcing is an integration of the users or consumers that creates value in internal processes (Kleemann et al., 2008). 
	(2) Crowdsourcing is an integration of the users or consumers that creates value in internal processes (Kleemann et al., 2008). 

	(3) Crowdsourcing is a new online production model that collaborates the networked people to solve the problem and complete a task (Vukovic, 2009). 
	(3) Crowdsourcing is a new online production model that collaborates the networked people to solve the problem and complete a task (Vukovic, 2009). 

	(4) Crowdsourcing is an outsourcing procedure of a task or job that invites a larger group of innovators to provide a solution (Liu and Porter, 2010).  
	(4) Crowdsourcing is an outsourcing procedure of a task or job that invites a larger group of innovators to provide a solution (Liu and Porter, 2010).  

	(5) Crowdsourcing is a procedure that motivates individuals to participate into the tasks voluntarily and allow both researchers and the crowd to find the solutions for the tasks (Schenk and Kishore, 2011). 
	(5) Crowdsourcing is a procedure that motivates individuals to participate into the tasks voluntarily and allow both researchers and the crowd to find the solutions for the tasks (Schenk and Kishore, 2011). 

	(6) Crowdsourcing uses a passionate crowd or loosely bound public to solve the problems (Wexler, 2011). 
	(6) Crowdsourcing uses a passionate crowd or loosely bound public to solve the problems (Wexler, 2011). 


	2.2.2 Open Data 
	Open data is a kind of public or private dataset that anyone can get access to freely through the internet with no restriction or cost. Usually, the open data are released by local government or institutions for relevant research studies.  
	There are certain requirements that open data should meet. One of the requirements is to ensure the free usage of data and the ability to reuse and redistribute data. The definition of “open” indicates that this kind of data is not restricted to a specific field or by any individual. Thus, according to Attard et al. (2015), the open data that are already published should be platform independent, information reusable, machine readable, and public available without any restrictions. To conclude, the open data
	2.2.3 Big Data 
	Big data are prevalent for multiple aspects of research studies recently which may require advanced data processing, essential data cleaning procedure, data integration with other supporting datasets to provide critical information for decision making.  
	With the development of technology, the importance of big data has been revealed. Generally speaking, big data refer to datasets that are too large to perceive, difficult to acquire, complex 
	to manage, and hard to processed by the traditional application software within a reasonable amount of time. Different definitions for big data are provided from various points of view by researchers, technological and scientific companies, data analysts, and technical specialists.  
	Apache Hadoop defines big data as the large datasets that cannot be extracted, managed, and processed by normal computers within an acceptable scope in 2010 (Chen et al., 2014). Similarly, an IDC report defines big data as a new generation of technologies that are designed to obtain the information from large volumes of data with wide diversities through an efficient data extraction and analysis procedure (Gantz and Reinsel, 2011). Thus, four main features of the big data can be identified which are large i
	2.2.4 Traditional Survey Methods 
	There are many traditional survey methods that have been utilized for data collection. Stated preference survey (i.e., SP survey) and revealed preference survey (i.e., RP survey) are the two kinds of survey methods that are commonly used by researchers. The SP survey designs the investigation based on assumed values, since the content of the questions is intentionally made up and has not taken place. This feature gives SP survey the advantage of flexibility. On the contrary, RP survey is designed to acquire
	Other survey methods (both paper-based and web-based) that have been used massively include traditional household survey (Kagerbauer et al., 2015), workplace survey, longitudinal and panel survey, transit on-board ridership surveys, commercial vehicle (truck) surveys and external station survey. 
	2.3 Smartphone Crowdsourcing Applications and Their Potential Use 
	As stated in Section 2.2.1, there are numerous definitions of crowdsourcing. This section will concentrate on the smartphone crowdsourcing applications that are related to cycling and introduce and summarize the potential use of this kind of data. 
	The first smartphone application designed for cycling data collection is CycleTracks which was developed by the San Francisco County Transportation Authority (SFCTA) in 2009 (SFCTA, 2013). The GPS-enabled smartphones were utilized to collect the cycling trajectory. In addition, demographic information and trip purposes were also collected from the users.  
	Based on the first smartphone application, AggieTrack was developed by Texas A&M University for collecting the travel information from the users within the university area (Hudson et al., 2012). Data including travel mode, trip purposes, classification (student, faculty or staff), etc. were collected after the generation of each trip. 
	In addition, Cycle Atlanta was also developed based on the CycleTracks smartphone application (Misra et al., 2014). Different from the previous applications, Cycle Atlanta provided 
	several additional features with a different user interface. Data other than the cycling trip related information were collected such as issues encountered by cyclists during their cycling trips, bicycle parking, and the locations of certain infrastructures. Similarly, demographic information is collected. 
	Based on Cycle Atlanta, RenoTracks was developed during 2013 (RenoTracks 2013). Different from Cycle Atlanta, RenoTracks added the “CO2 Saved” counter calculating the carbon dioxide emission reduction when selecting bicycle as the travel mode instead of automobile.  
	Strava is another smartphone application that has been widely used by numerous cyclists. Speed, distance, and trip time are displayed on the personal record dashboard. Graphical representations of the route profile and plan overview are also provided. The unique function for Strava enables the users to compete with other cyclists who bike on the same segment by tracking performance of the Strava users. This functionality helps Strava become more social and attracts lots of cyclists. Other popular smartphone
	These smartphone crowdsourcing applications offer massive data for researchers to conduct various research studies in terms of link-based and path-based cyclist route choice behavior analysis which will be reviewed in detail in the following sections. In addition, this kind of crowdsourced data can be utilized for other research areas as well including cycling safety, cycling activities associated with air pollution exposure, bicycle level of service, and health impact assessment, etc.  
	Raihan et al. (2017) investigated the impact of roadway characteristics and bicycle facilities on bicycle safety. In order to examine the association between bicycle crash frequencies and the impact factors (roadway characteristics and bicycle facilities), Crash Modification Factors (CMFs) were developed utilizing a robust cross-sectional analysis. This research focused on the urban facilities where 98 percent of the bicycle crashes occurred. The CMFs developed in this research provided the quantitative res
	Sun and Mobasheri (2017) conducted a study on the air pollution exposure for both commuting and non-commuting trips. Spatial patterns of non-commuting cycling trips were identified. Cycling behavior was analyzed based on the number of non-commuting trips for different environmental characteristics. Data utilized in this research study were collected from Strava Metro. According to the Strava nodes data, compared with commuting trips, non-commuting trips tend to be occurred in the outskirts of the city. Cycl
	Strava data were utilized by engineers and planners in Foresite Group (2015) to investigate the representativeness of the crowdsourced data. The correlation between the Bicycle Level-of-Service (BLOS) grades were evaluated with traditional methods and the crowdsourced 
	data. Results revealed that Strava data may not have the ability to represent all the cyclists, and the majority of the cycling trips are recreational activities.  
	To identify the location of cycling activities especially recreational trips, Griffin and Jiao (2015) analyzed the data collected from Travis County, Texas. Bicycle volumes were estimated based on the residential and employment density, the land use categories, bicycle infrastructures and terrain. Locations that were selected for recreational cycling trips were identified. The method developed in this research study provided guidance for health impact analysis studies. 
	2.4 Link-based Cyclist Route Choice Behavior Analysis 
	Many researchers have conducted their studies by using crowdsourced data. GPS enabled smartphones to provide researchers new opportunities to collect data from a broader group of people and use them to conduct the cyclists’ route choice analysis. The existing use of crowdsourced data for link-based cyclist route choice behavior analysis is presented as follows. 
	Moore (2015) conducted a study to analyze the impact of various factors on cycling route choice based on the crowdsourced bicycle data collected from Strava application. An ordinal logistic regression model was developed to examine the effect of impact factors on the cyclists’ route choice. GIS was applied to conduct a qualitative analysis in order to investigate the specific areas and facilities to discover their differences from other facilities. Results revealed that the selection of a road segment is hi
	Griffin and Jiao (2016) collected data from both CycleTracks smartphone application and the Strava fitness application to conduct a data comparison between crowdsourced bicycle data and the manual count bicycle data. Five specific locations were selected in the downtown Austin, Texas. All the data were compiled and compared in GIS for these five locations.  
	To explore the relationship between manual count data collected in Victoria, British Columbia, Canada and crowdsourced bicycle data from Strava application, a generalized linear model was developed by Jestico et al. (2016). The bicycle volumes were categorized into several levels, and a regression model was developed for the prediction of bicycle volume level. The maps that illustrate the distribution of bicycle volumes were created. Results revealed that the bicycle trips recorded by Strava are similar to 
	A data comparison was conducted by Watkins et al. (2016) to find out the differences between Cycle Atlanta and Strava data in terms of the sociodemographic information, total cycling trips on each road segment, and the cycling trips during each time of day. In addition, the manual count data were compared to the crowdsourced bicycle data from Cycle Atlanta in both AM and PM peak hours. The percentage of the manual count data collected by Cycle Atlanta was calculated based on data selected from 78 intersecti
	Hochmair et al. (2017) utilized the crowdsourced bicycle data collected from Strava application in the Miami-Dade County area to analyze the impact of demographic information, 
	network characteristics (especially bicycle facilities), and place specific features on bicycle ridership. A series of linear regression models were developed to predict the bicycle kilometers traveled for both commuting and non-commuting trips, and trips occurred on both weekdays and weekends. Eigenvector spatial filtering was adopted to avoid bias and model spatial autocorrelation. Results showed that Strava data performs well for the analysis of the impact of explanatory variables on bicycle volumes for 
	Route choice analysis was conducted by LaMondia and Watkins (2017) based on the crowdsourced bicycle data collected from Strava, Cycle Dixie and Cycle Atlanta. The impact factors were identified by modeling the bicycle facility preferences. In addition, cyclists’ route segment choice and route choice were analyzed. Results revealed that sociodemographic information, road characteristics, and land use have a significant impact on the route segment choice.  
	Proulx and Pozdnukhov (2017) developed a novel method with geographically weighted data fusion for bicycle volume estimation utilizing crowdsourced data from Strava smartphone application and Bay Area Bikeshare data. It can be found that the method of Geographically Weighted Data Fusion can improve predictive accuracy for link-level bicycle volume estimation. 
	Zimmermann et al. (2017) analyzed the link-based cyclist route choice based on the GPS data in the network with more than 40,000 road segments in the City of Eugene. A recursive logit (RL) model following the research conducted by Fosgerau et al. (2013) was developed which did not require the choice set generation procedure. The results showed the advantages of this method in terms of the link flow prediction and accessibility measures. Compared to the path-based route choice models, this method is better i
	To conclude, a summary of the link-based route choice analysis studies is provided below in TABLE 2.1. 
	Table 2.1  Summary of Link-based Route Choice Analysis 
	Year 
	Year 
	Year 
	Year 
	Year 

	Author 
	Author 

	Data 
	Data 

	Methods 
	Methods 

	Results 
	Results 



	2015 
	2015 
	2015 
	2015 

	Moore 
	Moore 

	Data from Strava application 
	Data from Strava application 

	Ordinal logistic regression model 
	Ordinal logistic regression model 

	Roadway characteristics and surrounding land-use have a significant impact on whether or not a particular street segment would be used. 
	Roadway characteristics and surrounding land-use have a significant impact on whether or not a particular street segment would be used. 


	2016 
	2016 
	2016 

	Griffin and Jiao 
	Griffin and Jiao 

	Data from CycleTracks, Strava application, and traffic counts 
	Data from CycleTracks, Strava application, and traffic counts 

	Ordinary least squares regression 
	Ordinary least squares regression 

	Crowdsourced data are appropriate for bicycle volume evaluation.  
	Crowdsourced data are appropriate for bicycle volume evaluation.  


	2016 
	2016 
	2016 

	Jestico et al. 
	Jestico et al. 

	Data from Strava and manual 
	Data from Strava and manual 

	Generalized linear model 
	Generalized linear model 

	In mid-size North American cities within urban areas, the routes 
	In mid-size North American cities within urban areas, the routes 




	Table
	TBody
	TR
	counting data 
	counting data 

	recorded in crowdsourced fitness application tend to be similar with those of the commuter cyclists. 
	recorded in crowdsourced fitness application tend to be similar with those of the commuter cyclists. 


	2016 
	2016 
	2016 

	Watkins et al. 
	Watkins et al. 

	Data from Cycle Atlanta, Strava, and actual cyclist trips 
	Data from Cycle Atlanta, Strava, and actual cyclist trips 

	Data comparison 
	Data comparison 

	The smartphone application data should be carefully used considering the likely bias. 
	The smartphone application data should be carefully used considering the likely bias. 


	2017 
	2017 
	2017 

	Hochmair et al. 
	Hochmair et al. 

	Data from Strava application 
	Data from Strava application 

	Linear regression models 
	Linear regression models 

	Strava data can be used to examine the impact of explanatory variables on estimated bicycle volume. 
	Strava data can be used to examine the impact of explanatory variables on estimated bicycle volume. 


	2017 
	2017 
	2017 

	LaMondia and Watkins 
	LaMondia and Watkins 

	Data collected using the Strava, Cycle Dixie and Cycle Atlanta 
	Data collected using the Strava, Cycle Dixie and Cycle Atlanta 

	Route suitability score and preference models 
	Route suitability score and preference models 

	Demographics, roadway characteristics and surrounding land-use have a significant impact on route choice. 
	Demographics, roadway characteristics and surrounding land-use have a significant impact on route choice. 


	2017 
	2017 
	2017 

	Proulx and Pozdnukhov 
	Proulx and Pozdnukhov 

	Crowdsourced data from Strava and usage data from Bay Area Bikeshare 
	Crowdsourced data from Strava and usage data from Bay Area Bikeshare 

	Geographically Weighted Data Fusion 
	Geographically Weighted Data Fusion 

	The method of Geographically Weighted Data Fusion can improve predictive accuracy for link-level bicycle volume estimation.  
	The method of Geographically Weighted Data Fusion can improve predictive accuracy for link-level bicycle volume estimation.  


	2017 
	2017 
	2017 

	Zimmermann et al. 
	Zimmermann et al. 

	GPS observations in the city of Eugene 
	GPS observations in the city of Eugene 

	Link-based bike route choice model (recursive logit model) 
	Link-based bike route choice model (recursive logit model) 

	Cyclists are sensitive to distance, traffic volume, slope, crossings and the presence of bike facilities. 
	Cyclists are sensitive to distance, traffic volume, slope, crossings and the presence of bike facilities. 




	 
	2.5 Choice Set Generation Methods 
	In a path-based route choice modeling procedure, there are usually two steps. First, possible alternative routes within the roadway network are needed to be generated to comprise the choice set. After that, the probability of a certain route being chosen from the generated choice set is calculated based on the route choice model. Thus, this section will introduce various methods to accomplish the first step of the route choice modeling which is choice set generation.  
	In a bicycle network, there are numerous alternative routes for bicyclists to choose either for their commute trips or their recreational trips. Since the purpose of this project is to analyze bicyclists’ route choice behavior, the preparation work (choice set generation) is essential. This task of the project is to ideally identify all the biking routes that any traveler might consider. In particular, algorithmic rules for generating the observed biking routes to avoid biases in the model estimation proced
	There are many previous methods for the design of a path generation algorithm. One of the well-known methods is called the K-shortest Path algorithm which generates the first “k” shortest paths for a given origin-destination pair in a roadway network. There are two popular heuristics which are link penalty and link elimination methods (De La Barra et al., 1993). 
	According to these two heuristics, the link penalty method gradually increases the impedance of all links on the shortest path, while the link elimination method removes the links on the shortest paths in sequence to generate new routes.  
	The labeling approach is also a choice set generation method. It allows the availability for multiple link attributes including travel time, distance, cost, etc. that produce alternative routes (Ben-Akiva et al., 1984). In this method, the routes may be labeled based on the criteria such as “minimize time”, “minimize distance”, “minimize cost”, “maximize the use of expressways”, etc. 
	In addition, simulation methods produce alternative feasible paths by drawing impedances from different probability distributions. The distribution type (for example, Gaussian, Gumbel, Poisson), distribution parameters, number of draws and the seed of the pseudo-random number generator are design variables. (Bekhor et al., 2006) 
	Many researchers have applied different methods of choice set generation to get ready for the route choice analysis. The existing choice set generation methods that include but are not limited to the ones introduced above are presented as follows.  
	Bekhor et al (2006) utilized the simulation methods to produce alternative paths which form the choice set. A Gaussian distribution with a mean and standard deviation calculated from travel times was used. (The choice of the Gaussian distribution was primarily for computational convenience, rather than for any theoretical reason.) Up to 48 draws were simulated for each observation, as this was estimated to take roughly the same computational time as the link elimination and link penalty algorithms. 
	The choice set generation approach used in the research conducted by Hess et al. (2015) was developed by Rieser-Schssler et al. (2013) specifically for route generation in high-resolution networks and successfully applied to different bike and route choice problems. The ability to apply this non-behavioral approach easily across different context and countries is a clear advantage, with only an application-specific cost function being needed for each study. The method employs a link elimination approach whi
	Broach et al. (2009) developed a sophisticated choice set generation algorithm based on multiple permutations of labeled path attributes, which seems to out-perform comparable implementations of other route choice set generation algorithms. 
	Bierlaire et al. (2010) sampled the path alternatives using a biased random walk algorithm, with arc weights at each node set by the ratio of the length of the shortest path to the destination using any arc and using the target arc. The sampling bias was subsequently corrected in the choice model. 
	Menghini et al. (2010) employed a breadth-first search link elimination approach. It searches for the shortest path between origin and destination and removes the links in turn. These shortest paths became in turn the starting points for the next iteration of link elimination. The algorithm kept track of the networks generated and retained only unique and connected networks 
	and in turn shortest paths for the choice set. The depth, i.e. number of links removed, was increased until the desired number of distinct routes in the choice set had been generated or the original shortest path was exhausted. 
	Frejinger et al. (2009) presented a new paradigm for choice set generation in the context of route choice model estimation. The choice sets were assumed to contain all paths connecting each origin-destination pair. Although this is behaviorally questionable, this assumption was made in order to avoid bias in the econometric model. These sets were in general impossible to generate explicitly. Therefore, an importance sampling approach was proposed to generate subsets of paths suitable for model estimation. U
	2.6 Path-based Cyclist Route Choice Behavior Analysis 
	Based on the methods that generate appropriate choice set, the path-based cyclist route choice behavior analysis can be conducted. Several previous research studies concentrating on the path-based route choice behavior are summarized as follows. 
	Stinson and Bhat (2003) examined the explanatory variables that have a significant impact on the commuting cycling trips. Two categories of factors were considered which include route level and link level attributes. Data used in this research study were collected based on a stated preference survey completed through the internet. Empirical models were developed, and results were concluded that the most critical factor for commuting trips is travel time. Other factors that affect the route choice significan
	Dill and Gliebe (2008) studied the impact of different types of bicycle facilities on bicycle activities. GPS data were utilized with a sample of 164 cyclists in Portland, OR from March to November 2007. The cyclists selected in this research study usually bike more than one day per week. Four major sets of research questions were addressed with the GPS data. Results revealed that most of the cycling trips generated by the participants are for utilitarian purposes. Approximately half of the cycling trips oc
	Sener et al. (2009) examined a comprehensive set of attributes that influence bicycle route choice. The data used in the analysis was drawn from a web based stated preference survey of Texas bicyclists. The results of the study emphasized the importance of a comprehensive evaluation of both route-related attributes and bicyclists’ demographics in bicycle route choice decisions. The empirical results indicated that travel time (for commuters) and motorized traffic volume were the most important attributes in
	Winters et al. (2010) investigated differences in total distance, road type used, and built environment features for shortest-path routes versus actual routes for utilitarian bicycle trips and 
	car trips in Metro Vancouver, Canada. Regardless of mode, people did not detour far off the shortest route: detour ratios (actual distance/shortest distance) were similar. Compared with shortest-path routes, cyclists spent significantly less of their travel distance along arterial roads and significantly more along local roads, off-street paths, and routes with bike facilities. As expected, car trips were more likely to be along highways and less likely to be along local roads than predicted by the shortest
	Charlton et al. (2011) introduced the CycleTracks smartphone application and its use for recording cycling trips by cyclists. The cycling data in terms of cyclist-related and trip-related information were collected via this smartphone application. The potential data bias was discussed, and route choice model was developed based on this dataset.  
	Following the research of the first bicycle route choice model built with GPS data in Zurich, Hood et al. (2011) analyzed the cyclist route choice and developed a route choice model based on the crowdsourced bicycle data collected from CycleTracks. A “doubly stochastic” choice set generation method was adopted in this research based on the study conducted by Bovy and Fiorenzo Catalano (2007). Instead of using the multinomial logit model that has the independence of irrelevant alternatives property, a path s
	To analyze the bicyclists’ route choice, especially the preference for bicycle facilities, Broach et al. (2012) developed a route choice model base on the GPS data of 1449 cycling trips occurred in Portland, Oregon. Three choice set generation methods (K-shortest paths, route labeling, and simulated shortest paths) were compared, and a modified method of route labeling was developed and utilized for this research study. A path size logit model was built for cyclist route choice analysis, and route choice di
	Chen and Chen (2013) examined recreational cyclists’ preferences for bicycle routes in Taiwan using the stated preference method. The multinomial logit model was employed to estimate the relative influences of facility attributes on bicycle route choice behavior, while the latent class model was adopted in order to better understand the differences in preferences. Using data collected from 232 recreational cyclists in Taiwan, the results indicated that bicycle facility attributes, such as basic facilities a
	Casello and Usyukov (2014) estimated the utility/generalized cost function of the path alternatives for each cyclist based on the GPS data that record the cycling activities. Four non-chosen alternatives were generated for the choice set. Two multinomial logit models were developed for the route choice analysis. The explanatory variables including the length of trips, automobile speed, slope, and the bike lanes were examined to see whether they have significant 
	impacts on cyclists’ route choice. The predictive powers of the multinomial logit models were tested based on the 181 trips which were not used for the model parameter estimation. The results showed that vehicle speeds and the presence of bike lanes are factors that affect cyclists’ route choice significantly.  
	Yeboah et al. (2015) used the GPS tracks and travel diary data from 79 cyclists around Newcastle upon Tyne in North East England as well as the OpenStreetMap (OSM) as the transportation network to conduct route choice analysis. Factors based on the previous relevant literature were examined to test the impact on commuting cycling trips. The results showed that OSM combined with GPS data of cycling trajectory performs well for bicyclists’ route choice research. The transportation network restrictions includi
	Bergman and Oksanen (2016) collected the crowdsourced bicycle data from Sports Tracker and utilized this data and OpenStreetMap to provide automatic route choices. The Sports Tracking data was pre-processed, and path choice set was generated. An advanced Hidden Markov Model (HMM)-based algorithm and a simple geometric point-to-curve method were utilized and compared to conduct the map-matching procedure. Results showed that HMM-based algorithm provides better matching performance. 
	Grond (2016) conducted a research study on the influence of physical and environmental factors of the network on cyclists’ route choice. This study can provide a better understanding of the impact of physical infrastructure which will guide the city planners for bicycle facility investment. Data utilized in this research study were collected from the cycling application with cycling trips recorded from August 23 and September 23, 2015 in the City of Toronto. GPS tracks were matched to the GIS network datase
	Khatri et al. (2016) utilized GPS data collected from Grid Bikeshare recording 9,101 trips created by 1,866 bikeshare users in Phoenix, Arizona to analyze the cyclists’ route choice behavior, especially the impact of bicycle facility. Only direct utilitarian trips were considered in this research study, and circuitous trips or recreational trips were removed from the dataset. The results showing route choice behavior of register users and casual users were compared. It was found that registered users prefer
	To conclude, a summary of the path-based route choice analysis studies is provided below in TABLE 2.2. 
	Table 2.2  Summary of Path-based Route Choice Analysis 
	Year 
	Year 
	Year 
	Year 
	Year 

	Author 
	Author 

	Data 
	Data 

	Methods 
	Methods 

	Results 
	Results 



	2008 
	2008 
	2008 
	2008 

	Dill and Gliebe 
	Dill and Gliebe 

	GPS data of Portland, OR 
	GPS data of Portland, OR 

	USGS Digital Elevation Model 
	USGS Digital Elevation Model 

	The majority of the bicycle travels were for utilitarian purposes. About half of the trips occurred during morning and evening peak travel times. Distance and traffic volume have a negative impact on route choice. 
	The majority of the bicycle travels were for utilitarian purposes. About half of the trips occurred during morning and evening peak travel times. Distance and traffic volume have a negative impact on route choice. 


	2009 
	2009 
	2009 

	Sener et al.  
	Sener et al.  

	A web based stated preference survey of Texas bicyclists 
	A web based stated preference survey of Texas bicyclists 

	Panel mixed multinomial logit 
	Panel mixed multinomial logit 

	Travel time (for commuters) and motorized traffic volume are the most important attributes in bicycle route choice.  
	Travel time (for commuters) and motorized traffic volume are the most important attributes in bicycle route choice.  


	2010 
	2010 
	2010 

	Winters et al. 
	Winters et al. 

	A survey conducted in 2006 in Metro Vancouver 
	A survey conducted in 2006 in Metro Vancouver 

	Logistic model 
	Logistic model 

	Road infrastructure and bicycle-specific aspects of the built environment influence people’s travel patterns: that car drivers detour from shortest routes to fast roads and cyclists deviate from shortest routes to routes with better bicycle facilities. 
	Road infrastructure and bicycle-specific aspects of the built environment influence people’s travel patterns: that car drivers detour from shortest routes to fast roads and cyclists deviate from shortest routes to routes with better bicycle facilities. 


	2011 
	2011 
	2011 

	Charlton et al. 
	Charlton et al. 

	Data from CycleTracks application 
	Data from CycleTracks application 

	Bicycle route choice model 
	Bicycle route choice model 

	Cyclists are sensitive to slope, presence of bike lanes or bike route designations. The route choice behavior is also influenced by trip purpose and gender. 
	Cyclists are sensitive to slope, presence of bike lanes or bike route designations. The route choice behavior is also influenced by trip purpose and gender. 


	2011 
	2011 
	2011 

	Hood et al. 
	Hood et al. 

	Data from CycleTracks application 
	Data from CycleTracks application 

	Path Size Multinomial Logit model 
	Path Size Multinomial Logit model 

	Bike lanes are preferred compared to other types of bicycle facilities, while steep slopes are disfavored. Length and turns have negative impact on route choice. Surprisingly, traffic volume, speed, number of lanes, crime rates and nightfall have no impact on route choice. 
	Bike lanes are preferred compared to other types of bicycle facilities, while steep slopes are disfavored. Length and turns have negative impact on route choice. Surprisingly, traffic volume, speed, number of lanes, crime rates and nightfall have no impact on route choice. 


	2012 
	2012 
	2012 

	Broach et al. 
	Broach et al. 

	The GPS data collected in Portland, Oregon 
	The GPS data collected in Portland, Oregon 

	Path-Size Logit (PSL) model 
	Path-Size Logit (PSL) model 

	Cyclists are sensitive to distance, turn frequency, slope, intersection control and volumes. For commuters, they are more sensitive to distance than non-commuters. 
	Cyclists are sensitive to distance, turn frequency, slope, intersection control and volumes. For commuters, they are more sensitive to distance than non-commuters. 


	2013 
	2013 
	2013 

	Chen and Chen 
	Chen and Chen 

	Data collected from 232 recreational cyclists in Taiwan 
	Data collected from 232 recreational cyclists in Taiwan 

	Multinomial logit model and latent class model 
	Multinomial logit model and latent class model 

	Bicycle facility attributes, such as basic facilities and maintenance equipment, tourist information centers, and attractions had significant effects on recreational 
	Bicycle facility attributes, such as basic facilities and maintenance equipment, tourist information centers, and attractions had significant effects on recreational 
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	cyclists’ preferences.  
	cyclists’ preferences.  


	2014 
	2014 
	2014 

	Casello and Usyukov 
	Casello and Usyukov 

	724 cycling trip GPS data 
	724 cycling trip GPS data 

	Multimodal logit models 
	Multimodal logit models 

	Cyclists consider both vehicle speeds and the presence or absence of a bike lane during route choice process. 
	Cyclists consider both vehicle speeds and the presence or absence of a bike lane during route choice process. 


	2015 
	2015 
	2015 

	Yeboah et al. 
	Yeboah et al. 

	OpenStreetMap, GPS tracks (7 days) and travel diary data 
	OpenStreetMap, GPS tracks (7 days) and travel diary data 

	Four-step method for generating routes 
	Four-step method for generating routes 

	Network restrictions for both observed and shortest paths are significant. 
	Network restrictions for both observed and shortest paths are significant. 


	2016 
	2016 
	2016 

	Bergman and Oksanen 
	Bergman and Oksanen 

	OpenStreetMap and mobile application data from Sports Tracker 
	OpenStreetMap and mobile application data from Sports Tracker 

	advanced HMM-based algorithm 
	advanced HMM-based algorithm 

	HMM-based algorithm has better matching results in terms of the number of the correctly matched road segments. 
	HMM-based algorithm has better matching results in terms of the number of the correctly matched road segments. 


	2016 
	2016 
	2016 

	Grond 
	Grond 

	GPS dataset from the City of Toronto’s cycling app 
	GPS dataset from the City of Toronto’s cycling app 

	path-size multinomial logit model 
	path-size multinomial logit model 

	Steep hills, high traffic volumes, left turns without signalized intersections and right turns at signalized intersections have negative impact on route choice. 
	Steep hills, high traffic volumes, left turns without signalized intersections and right turns at signalized intersections have negative impact on route choice. 


	2016 
	2016 
	2016 

	Khatri et al. 
	Khatri et al. 

	GPS data from Grid Bikeshare in Phoenix, Arizona 
	GPS data from Grid Bikeshare in Phoenix, Arizona 

	Path Size Logit Model 
	Path Size Logit Model 

	The proportion of one way segments, AADT and length of trip have a negative influence on route choice and number of signalized intersections has a positive influence on selecting routes. 
	The proportion of one way segments, AADT and length of trip have a negative influence on route choice and number of signalized intersections has a positive influence on selecting routes. 




	 
	2.7 Summary 
	This chapter provides a comprehensive review of the previous research on both linked-based and path-based cyclist route choice behavior analysis especially those based on crowdsourced bicycle data. It is intended to give a better understanding of crowdsourcing, and existing research efforts utilizing crowdsourced data which will provide a useful reference for future studies. 
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	3.1 Introduction 
	Collecting data including crowdsourced bicycle data from Strava and other relevant supporting data is the first step of this research study. Chapter 3 provides an introduction of the collected Strava data as wells as the critical supporting data that will be utilized for the modeling in the model development sections.  
	The following sections in Chapter 3 are organized as follows. Section 3.2 introduces Strava in detail to give an overview of this smartphone application. Section 3.3 presents the Strava data that are collected for the research study. Section 3.4 shows the data view to Strava data for different aspects including street view, intersection view, OD view, and the heatmap view. Section 3.5 presents the other essential supporting data that will be used for the link-based route choice behavior. Finally, Section 3.
	3.2 Introduction to Strava 
	Smartphone applications like Strava tend to generate route data that are saved in databanks together with the demographic details of the user derived from the application. These route data contain sensitive information, such as the user’s place of residence or workplace, which can also be connected to profile information such as name, age, gender, and other freely given information. When passing on data to third parties, vendors are obliged to anonymize this information in accordance with the data protectio
	The routing data used in this project are collected from Strava smartphone application developed by a technology company recording the cyclist travel trajectory with the GPS located in their smartphones. A screenshot of the application interface can be seen in Figure 3.1, which also shows some of the information that the app displays to the user after a route has been recorded. The application is available for use by any person who has a GPS device and access to the internet, with the majority of users comp
	also important to have high-quality accuracy, with dense tree foliage and tall buildings obscuring and scattering the GPS signal. 
	 
	Figure
	Figure 3.1: Strava App Screen Shots 
	 
	3.3 Strava Data 
	The GPS data collected from the Strava users usually include the biking information on the network at both the link-level and the intersection-level. The link-level data set contains the Strava user counts on each roadway segment and the intersection-level data set includes the number of cyclists for each intersection as well as their waiting times. To record the cycling route of the Strava users, the OD matrix data set is provided.   
	The data offered by Strava Metro usually contain three main components including core data, roll-ups, and reports. The core data provide cycling information in each minute in the city network at both the link-level and intersection-level. In addition, it provides the OD pairs for the cycling trips. The roll-ups data are the aggregated data developed from the core data to obtain cycling information for different times and trip purposes. And the reports of the data show a summary of the cyclists’ demographic 
	3.3.1 Core Data 
	1. Link-level data set: Database file that presents the cycling information (especially bicycle counts) on each roadway segment during the time period of the delivery. 
	2. Intersection-level data set: Database file shows the cyclist counts and waiting time at each intersection during the time period of the delivery. 
	3. OD data: Origin/Destination file provides the cycling trip information including the OD pairs during the time period of the delivery. 
	3.3.2 Roll-ups 
	The roll-up data are the categorized core datasets that are processed by Strava Metro. For the link-level and intersection-level core dataset, several roll-ups are provided to summarize the views that present total counts, hour groupings, monthly use, weekday/weekend, and seasonality. In addition, other views of the roll-ups can be generated by researchers based on the specific research needs. 
	The seasonality and hour groupings categorized for this research studies in the City of Charlotte are shown as follows. 
	On season: From March to October 
	Off-season: From November to February 
	Early AM hours: 12:00 am - 5:59 am (labeled as_0) 
	AM peak hours: 6:00 am - 8:59 am (labeled as_1) 
	Mid-day hours: 9:00 am - 2:59 pm (labeled as_2) 
	Peak afternoon hours: 3:00 pm - 5:59 pm (labeled as_3) 
	Evening hours: 6:00 pm - 7:59 pm (labeled as_4) 
	Late evening hours: 8:00 pm - 11:59 pm (labeled as_5) 
	3.3.3 Reports 
	1. Demographics: A report that summarizes the cyclist demographic information in terms of different age and gender. 
	2. Summary: The total Strava user counts and the cycling activities recorded during the time period of the delivery.  
	3.4 Data View 
	Metro Data view is another way for researchers to visualize the cycling information on the total biking activities, total cyclists, and the commuters aggregated to the street level, intersection and the origin-destination polygonal geometry. The default data view shows the total cycling activities in the whole network. Researchers can find the useful information (e.g., total activities) by selecting the intersection button in the map interface. When selecting the intersection view, the median waiting time o
	3.4.1 Street 
	The Street Data illustrating the cyclist counts in the City of Charlotte can be found in Figure 3.2, with dark blue color showing the lowest number of rides, and dark red representing the highest activity counts. The researchers can find the levels of activity counts by different colors corresponding to the number of rides shown in the legend. By hovering on the legend, researchers can find the percent distribution of number of streets. In addition, the counts of cyclists on a specific road segment can be s
	 
	Figure
	Figure 3.2: Charlotte Metro Data View 2017 Sample: Total activity counts from December 01, 2016 to November 30, 2017 
	 
	3.4.2 Intersections 
	The intersection view can be presented by selecting the intersection button on the map interface. The default map view will not provide the intersection-level data when the intersection selection is off.  
	There are multiple map interfaces that can be selected to show different data information. To view the counts of activities, rides button should be selected. Also, clicking on the cyclists button, the number of cyclists at the intersection can be shown. Cycling for different trip purposes can also be displayed by clicking on the commutes button to show the number of commuting trips at each intersection.  
	The visualization view of the intersection map interface can provide an overview of the rides, commutes, and bicyclist counts at each intersection, with larger nodes representing the higher counts, and brighter nodes depicting the longer intersection crossing time. When hovering on the specific intersection that a researcher might be interested in, the map will show the exact cycling activity data. The detailed intersection data view in the City of Charlotte can be found in Figure 3.3. 
	 
	Figure
	Figure 3.3: Charlotte Intersection Metro Data View 2017 Sample: Total activity counts from December 01, 2016 to November 30, 2017 
	 
	3.4.3 Origin and Destination 
	The origin and destination data view shows a cycling trip generated by a bicyclist with an origin/destination polygon layer based on a contiguous 350-meter hexagonal bin. Similar to the intersection button, the default data view will not show the OD pair information when the OD button is not selected.  
	Like the intersection view, different cycling information data can be obtained by selecting the toggle buttons shown on the map interface. By selecting the “Rides” button, the total number of cycling activities started within the polygon can be shown. To view the bicyclist counts, researchers can click on the cyclist button to obtain data regarding the number of bicyclists departed within the polygon.   
	Similarly, the visualization of the OD map indicates an overview of the rides, commutes, and bicyclists within the polygon with darker polygons representing the fewer counts and lighter polygons depicting the higher counts. When hovering on the polygon of a specific area, researchers can see the exact data of the trip origin. To view the destination polygons associated with the selected origin polygon, researchers can click on the origin polygon. To distinguish between origins and destinations, the destinat
	 
	Figure
	Figure 3.4: Charlotte Origin Destination Metro Data View 2017 Sample 
	 
	3.4.4 Heat Map 
	The heat map view shows a visualization of the GPS points which are aggregated to the road segments. To view the heatmap of the streets or intersection, the “Heat button” should be selected. Streets with higher cycling activity counts will be shown in brighter lines, while streets with a fewer number of cycling activities will be shown inn darker lines. The heat map view of the City of Charlotte can be seen in Figure 3.5. 
	 
	Figure
	Figure 3.5: Charlotte Heat Map View 
	 
	3.5 Other supporting data 
	3.5.1 Bicycle facilities 
	The bicycle facilities might have a potential impact on the cycling behavior. Therefore, the information on the existing bicycle facilities in the City of Charlotte are collected for the 
	cycling behavior analysis. A bicycle facility map showing the bike lanes, off street paths, signed bike routes, suggested bike routes, greenways, and the low comfort suggested bike routes can be seen in Figure 3.7. Please note that this map can be found on the following website: 
	cycling behavior analysis. A bicycle facility map showing the bike lanes, off street paths, signed bike routes, suggested bike routes, greenways, and the low comfort suggested bike routes can be seen in Figure 3.7. Please note that this map can be found on the following website: 
	http://charlotte.maps.arcgis.com/apps/PanelsLegend/index.html?appid=00e8015ea3e54607a880fe31cc7e2fbf
	http://charlotte.maps.arcgis.com/apps/PanelsLegend/index.html?appid=00e8015ea3e54607a880fe31cc7e2fbf

	. 

	 
	Figure
	Figure
	Figure 3.6: Bike Facilities in the City of Charlotte 
	3.5.2 Population 
	The population data collected from the US census data set can be seen in Figure 3.8. Please note that this data are found on the following website: 
	The population data collected from the US census data set can be seen in Figure 3.8. Please note that this data are found on the following website: 
	http://www.arcgis.com/home/webmap/viewer.html?url=https://services1.arcgis.com/yfahUFAYAdeS5rmM/ArcGIS/rest/services/Enriched%20Enriched%20Charlotte%20Blocks/FeatureServer&source=sd
	http://www.arcgis.com/home/webmap/viewer.html?url=https://services1.arcgis.com/yfahUFAYAdeS5rmM/ArcGIS/rest/services/Enriched%20Enriched%20Charlotte%20Blocks/FeatureServer&source=sd

	. 

	 
	Figure
	Figure 3.7: Total Population in the City of Charlotte 
	3.5.3 Slope 
	The slope cell data shown in Figure 3.9 are collected from the ArcGIS online dataset. Please note that researchers can find this data by adding data from ArcGIS online with “Lidar2017_Slope”.  
	 
	Figure
	Figure 3.8: Slope in City of Charlotte 
	3.6 Summary 
	This chapter shows the data collected for this research such as Strava data that contains cycling information, demographic data, bicycle facility data, and slope data in the City of Charlotte. These data will be utilized in the cycling behavior modeling in the model development chapter.  
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	4.1 Introduction 
	This chapter analyzes the crowdsourced bicycle data collected from Strava. Descriptive analyses are conducted based on the Strava data in terms of demographics, trip purposes, bicycle volume for different months, time of day, and day of week, and origin and destination of cycling trips. 
	The sections in Chapter 4 are organized as follows. Section 4.2 presents the demographic information on Strava users. Section 4.3 describes the cycling trips for different trip purposes. Section 4.4 shows the bicycle count data by different month of year, weekday and weekend, and time of day. Section 4.5 provides the origin/destination information for Strava users’ cycling trips. Finally, Section 4.6 concludes the chapter with a summary.  
	4.2 Demographics 
	According to the data collected from Strava, there were 8,857 cyclists using Strava applications to record their cycling trips during December 2016 to November 2017 in the City of Charlotte. 140,428 trips were generated by these Strava users.  
	From the cyclist demographic information report provided by Strava, most of the cyclists are male accounting for 80.49% of the total Strava users in the City of Charlotte. Only 14.91% of the cyclists are female. In addition, 407 cyclists prefer to not present their gender in the application. The number of cyclist counts in the City of Charlotte from December 2016 to November 2017 is presented in Figure 4.1. 
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	Figure 4.1: Strava User Counts for Different Genders  
	 
	The number of Strava users from different age groups can be found in the demographic information report. According to the data, the ages of the Strava users range from under 25 to 
	over 95 which cover both young and old cyclists. The portion of cyclists from different age groups is presented in Figure 4.2. From the figure, it can be seen that the majority of the cyclists are between 25 and 54. Cyclists over 65 are very few. However, there are 1578 cyclists who do not provide their ages to Strava. 
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	Figure 4.2: Portion of Cyclists from Different Age Groups 
	 
	4.3 Trip Purpose 
	The trip purposes of the Strava users are categorized into two parts which are commute trips and non-commute trips. The majority of the cycling trips generated by Strava users are non-commute trips. Figure 4.3 shows the comparison of the number of commute trips and non-commute trips in the City of Charlotte during December 2016 to November 2017. From the figure, it can be seen that the number of commute trips is only 25,737, while the number of non-commute trips is 114,691.  
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	Figure 4.3: Cycling Activities for Different Trip Purposes 
	 
	To view the distribution of the commute cyclist counts on each road segment in the City of Charlotte, a map is presented in Figure 4.4. From this figure, it can be found that the road segments associated with high bicycle volume are located in the center city where the business district of Charlotte is located. The reason that high volume of commute trips occurred in center city is probably related to the following facts: 1) It is difficult to drive in the center city since there are a lot of one-way roads;
	 
	Figure
	Figure
	Figure 4.4: Total Commute Trips 
	4.4 Cyclist Counts 
	4.4.1 Total Cyclist Counts 
	To have an overview of the cyclist distribution in the City of Charlotte, a map that presents the number of cyclist counts on each roadway segment from December 2016 to November 2017 is shown in Figure 4.5. It can be seen that most of the road segments have low cyclist counts.  
	 
	Figure
	Figure 4.5: Total Cyclist Counts  
	 
	From the total cyclist counts presented in the above figure, four locations with high bicycle volumes are identified and shown in Figure 4.6 which are greenway, school, airport, and park. These locations are popular among Strava users in the City of Charlotte.  
	       
	Figure
	Figure
	4.6.a Greenway                                                                   4.6.b School 
	       
	Figure
	Figure
	4.6.c Airport                                                                        4.6.d Park 
	Figure 4.6: Four Popular Cycling Locations  
	 
	4.4.2 Month of Year 
	To discover the variation trend of the cyclist distribution in the City of Charlotte from December 2016 to November 2017, maps are created to illustrate the bicyclist counts on each road segment in the whole network in Figure 4.7. Since cycling activities have a strong relationship with the weather condition, the cyclists’ behavior for each month of year may vary with the change of temperature and the specific weather condition throughout the year.  
	 
	Figure
	4.7.a December 2016                          4.7.b January 2017                             4.7.c February 2017 
	 
	Figure
	4.7.e March 2017                                     4.7.f April 2017                                      4.7.g May 2017 
	 
	Figure
	4.7.h June 2017                                       4.7.i July 2017                                 4.7.j August 2017 
	 
	Figure
	4.7.k September 2017                              4.7.l October 2017                           4.7.m November 2017 
	Figure 4.7: Total Bicycle Volume in Each Month  
	The total bicycle volumes in the whole network for each month in the investigation year are presented in Figure 4.8. Comparing the twelve maps shown in Figure 4.7 and the bar chart in Figure 4.8, the characteristics of cycling behavior in twelve months are concluded as follows: 
	1. The common feature of the cycling behavior over the twelve months is the consistency of the four popular cycling locations which are greenway, school, airport, and park.  
	1. The common feature of the cycling behavior over the twelve months is the consistency of the four popular cycling locations which are greenway, school, airport, and park.  
	1. The common feature of the cycling behavior over the twelve months is the consistency of the four popular cycling locations which are greenway, school, airport, and park.  

	2. The actual on-season months for cycling in the City of Charlotte are from April to October. The total bicycle volumes in the whole network are increasing from 
	2. The actual on-season months for cycling in the City of Charlotte are from April to October. The total bicycle volumes in the whole network are increasing from 


	December 2016 and reach a peak in July 2017. With the variation of the temperature and weather condition, the total bicycle volumes begin to decrease from July 2017 to November 2017.  
	December 2016 and reach a peak in July 2017. With the variation of the temperature and weather condition, the total bicycle volumes begin to decrease from July 2017 to November 2017.  
	December 2016 and reach a peak in July 2017. With the variation of the temperature and weather condition, the total bicycle volumes begin to decrease from July 2017 to November 2017.  

	3. The variances of the bicycle volumes for different locations in each month are not the same. 
	3. The variances of the bicycle volumes for different locations in each month are not the same. 

	4. Greenways are popular among Strava users and the bicycle volume on greenway starts to increase from February and decrease in December. For the uptown area and the roads near airport area, the bicycle volume increases from April and decreases in October. For the bicycle volume in the park, it remains high volume from August to November.  
	4. Greenways are popular among Strava users and the bicycle volume on greenway starts to increase from February and decrease in December. For the uptown area and the roads near airport area, the bicycle volume increases from April and decreases in October. For the bicycle volume in the park, it remains high volume from August to November.  
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	Figure 4.8: Total Bicycle Volume in the Network 
	4.4.3 Weekdays and Weekends 
	The cycling activities occurred on weekdays and weekends are different. To see the volume difference between weekdays and weekends on each road segment, a map is generated in Figure 4.9 where red lines represent the higher bicycle volume on weekends and green lines depict the higher volume on weekdays. According to Figure 4.9, the uptown area in the City of Charlotte appears to have more green lines which indicates more weekday cycling trips in this location.  
	 
	Figure
	Figure 4.9: Total Bicycle Volume on Weekdays and Weekends 
	4.4.4 Time of Day 
	The bicycle volume for each road segment varies with different time of day. The variation of bicycle volume is presented in Figure 4.10. From the figure, one can see that most of the cycling activities occurred from 5 am in the morning to 7 pm in the evening. Two cycling peaks are identified in this figure which are around 8 am and 6 pm. The bicycle volume at 5 am is higher than the volume at 6 am and 7 am. It can be assumed that cyclists choose to bike early in the morning before working hour. There is a d
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	Figure 4.10: Total Bicycle Volume for Different Time of Day 
	4.5 Origin/Destination 
	According to the origin and destination data provided by Strava Metro, the total number of unique OD pairs is 23,617. Among these OD pairs, the most popular one is from Polygon ID 2857 back to the same polygon where the parking lot of the US National Whitewater Center is located. The location of this polygon is presented in Figure 4.11. There are multiple greenways around this area, cyclists can drive to park at this location and bike on the greenways nearby.  
	 
	Figure
	Figure 4.11: The Location of the Most Popular OD Pair 
	During the investigation year, a total of 2,384 unique bicyclists select to start their trips from the location highlighted in Figure 4.11 and end their trips at the same location. 11,602 cycling trips are generated by these bicyclists which are all non-commute trips. The number of the bicyclists and cycling trips for this OD pair during different time periods can be found in Table 4.1.  
	Table 4.1  Number of Bicyclists and Trips during Different Time Periods 
	Time Period 
	Time Period 
	Time Period 
	Time Period 
	Time Period 

	00:00 – 05:59 
	00:00 – 05:59 

	06:00 – 8:59 
	06:00 – 8:59 

	09:00 – 14:59 
	09:00 – 14:59 

	15:00 – 17:59 
	15:00 – 17:59 

	18:00 – 19:59 
	18:00 – 19:59 

	20:00 – 23:59 
	20:00 – 23:59 



	Number of Bicyclists 
	Number of Bicyclists 
	Number of Bicyclists 
	Number of Bicyclists 

	1 
	1 

	395 
	395 

	1867 
	1867 

	1097 
	1097 

	482 
	482 

	28 
	28 


	Number of Cycling Trips 
	Number of Cycling Trips 
	Number of Cycling Trips 

	1 
	1 

	763 
	763 

	5750 
	5750 

	3862 
	3862 

	1167 
	1167 

	59 
	59 




	 
	According to the table above, the numbers of bicyclists and cycling trips vary with different time periods. Most of the bicyclists select to bike from 9 am to 6 pm. The variation is shown in Figure 4.12 and the portion of cycling trips occurred in each time period is presented in Figure 4.13. According to Figure 4.12, both the numbers of bicyclists and cycling trips increase from 00:00 to 15:00 and then begin to decrease. From Figure 4.13, nearly half of the cycling trips occurred from 9 am to 3 pm. Only 7.
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	Figure 4.12: The Variation of the Bicyclist/Trip Number for Different Time Periods 
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	Figure 4.13: The Portion of Cycling Trips Occurred in Each Time Period 
	Comparing the commute trips and non-commute trips, most of the commute trips with the same OD pair are generated by a unique bicyclist, while several non-commute trips occurred at popular locations are generated by multiple bicyclists. That is to say, the commuters have distinctive commute trips and the non-commuters have similar recreational trips.  
	The detailed analyses based on the total cyclist counts, total commute counts, and the activity counts on weekdays and weekends in each origin and destination polygon are presented in the following sections.  
	4.5.1 Total Cyclist Counts 
	To have an overview of the origins selected by the Strava users in the City of Charlotte from December 2016 to November 2017, a map that illustrates the number of cyclists in each origin polygon is presented in Figure 4.14. It can be seen that the majority of the preferred origins are located in the center city, the Renaissance Park near airport, around the US National Whitewater Center (the western part of the city), Colonel Francis J. Beatty Regional Park (the southern part of the city), and the Sherman B
	 
	Figure
	Figure 4.14: Total Cyclist Counts in Each Origin Polygon 
	Similarly, the total cyclist counts in each destination polygon in the City of Charlotte are shown in Figure 4.15. Comparing the cyclist counts in the origin and destination polygons, the locations of destination polygons associated with high number of cyclist counts remain the same as the locations of the preferred origin polygons.  
	 
	Figure
	Figure 4.15: Total Cyclist Counts in Each Destination Polygon 
	4.5.2 Total Commute Counts 
	To see the difference of popular origin and destination locations between the total trips and the commute trips, the total commute counts within each origin and destination polygon are aggregated and presented in the following figures.  
	 
	 
	Figure
	Figure 4.16: Total Commute Counts in Each Origin Polygon 
	In Figure 4.16, most of the commute trips start from the center city. Compared to the total cyclist counts in each origin polygon containing both commute and non-commute trips, the locations near parks are no longer associated with high number of commute origins. Most of the origin polygons concentrate in the uptown area, and some others spread out in the northern and southern parts of the city.  
	 
	 
	Figure
	 
	Figure 4.17: Total Commute Counts in Each Destination Polygon 
	Similar result can be found in Figure 4.17. Most of the destination polygons associated with high commute counts are located in the center city. Other selected destinations are spread out in the southern and northern parts of the city. 
	4.5.3 Total Activity Counts on Weekdays and Weekends 
	The cycling activities occurred on weekdays and weekends can be different. In order to discover the differences of the preferred origins and destinations for cycling trips on weekdays and weekends, two figures demonstrating the comparison of total activity counts on weekdays or weekends for each origin and destination polygon are presented in Figure 4.18 and Figure 4.19. 
	 
	Figure
	Figure 4.18: Total Activity Counts on Weekdays and Weekends in Each Origin Polygon 
	In Figure 4.18 and Figure 4.19, red polygons indicate more activity counts on weekends, green polygons represent more activity counts on weekdays, and yellow polygons demonstrate equal counts. According to Figure 4.18, more cycling trips start at the center and northern part of the city on weekdays, and more cycling activities start at the locations near parks on weekends. This result is consistent with the analysis based on the commute and non-commute trips. 
	 
	Figure
	Figure 4.19: Total Activity Counts on Weekdays and Weekends in Each Destination Polygon 
	Similar result can be found in Figure 4.19. The destination polygons associated with higher activity counts on weekdays are located in the center city. Compared to Figure 4.18, more destination polygons with higher activity counts on weekends occurred in the center city.  
	4.6 Summary 
	This chapter provides the descriptive analyses based on the crowdsourced bicycle data collected from Strava Metro. Demographic information on the Stava users and the trip purposes are analyzed based on the delivery report. Link-based bicycle counts in different month of year, on both weekdays and weekends, and for commute and non-commute trips are presented in several heatmaps. In addition, cycling information regarding different OD pairs is also provided.  
	  
	  
	Chapter 5.  
	Chapter 5.  
	Modeling 
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	-
	based Cyclist Route Choice Behavior
	 

	5.1 Introduction 
	This chapter is based on the 2018 USDOT Project 03 “Evaluating the Potential Use of Crowdsourced Bicycle Data in North Carolina”. The data processing method is adopted from the procedure provided in Chapter 6 of the 2018 USDOT Project report. Discrete choice models are developed to analyze the link-based cyclist route choice behavior and model comparison is conducted to identify the best fit for this behavior analysis. To examine the different impacts of explanatory variables on link-based route choice duri
	The following sections are organized as follows. Section 5.2 through Section 5.5 provide the models developed for link-based cyclist route choice behavior including ordered logit (ORL) model, partial proportional odds (PPO) model, multinomial logit (MNL) model, and mixed logit (MXL) model respectively. Section 5.6 compares the models developed in the previous sections and identifies the best model structure for this research study. Section 5.7 develops two models for different selected time periods. Model r
	5.2 Ordered Logit Model 
	5.2.1 ORL Model Structure 
	The ordered logit model is one of the traditional discrete choice models that is utilized for ordinal dependent variable analysis. In this research study, the number of bicycle counts for each road segment is divided into five categories which are low (0-39), low-average (40-79), average (80-119), high-average (120-159), and high (160-200). In the ORL model, the level of bicycle counts on a road segment is denoted as 𝑦𝑖 which is associated with the latent variable 𝑦𝑖∗. The model specification is present
	𝑦𝑖∗=𝛽𝑋𝑖+𝜀𝑖                                                         Eq. (1) 
	where 𝑦𝑖∗ demonstrates the latent bicycle volume, 𝑋𝑖 denotes a vector of the explanatory variables contributing to the bicycle volume, 𝛽 represents the coefficients that will be estimated, and 𝜀𝑖 stands for the error term which is Gumbel distributed.  
	In this research study, the continuous latent variable 𝑦𝑖∗ is divided by the cut-points 𝜃𝑗 (j = 1, 2, …, J) into J intervals (J = 5 for this scenario) and the bicycle volume is shown as follows: 
	𝑦𝑖={    1,−∞≤𝑦𝑖∗≤𝜃12,𝜃1<𝑦𝑖∗≤𝜃23,𝜃2<𝑦𝑖∗≤𝜃34,𝜃3<𝑦𝑖∗≤𝜃45,𝜃4<𝑦𝑖∗≤+∞                                                    Eq. (2) 
	Thus, the probability of the level of bicycle counts on each road segment can be presented as follows: 
	𝑃𝑖(𝑗)={F(𝜃1−𝛽𝑗𝑋𝑖),𝑗=1F(𝜃𝑗−𝛽𝑗𝑋𝑖)−F(𝜃𝑗−1−𝛽𝑗𝑋𝑖),𝑗=2,…,𝑗−11−F(𝜃𝐽−1−𝛽𝑗𝑋𝑖),𝑗=𝐽                     Eq. (3) 
	where F(.) represents the cumulative standard logistic distribution function.  
	5.2.2 ORL Model Results 
	To analyze the level of bicycle counts on each road segment and examine the factors affecting the link-based route choice behavior of the bicyclists in the City of Charlotte, an ordered logit model is developed. Explanatory variables are carefully selected for this ORL model which include temporal variables, road characteristics, sociodemographic information, geometry, and bicycle facilities. The detailed variable description is presented in Table 5.1. 
	Table 5.1  Explanatory Variable 
	Variable 
	Variable 
	Variable 
	Variable 
	Variable 

	Description 
	Description 


	Temporal Variables  
	Temporal Variables  
	Temporal Variables  



	Hour_0 
	Hour_0 
	Hour_0 
	Hour_0 

	If cycling time is during 00:00-05:59, then Hour_0 = 1. 
	If cycling time is during 00:00-05:59, then Hour_0 = 1. 


	Hour_1 
	Hour_1 
	Hour_1 

	If cycling time is during 06:00-08:59, then Hour_1 = 1. 
	If cycling time is during 06:00-08:59, then Hour_1 = 1. 


	Hour_2 
	Hour_2 
	Hour_2 

	If cycling time is during 09:00-14:59, then Hour_2 = 1. 
	If cycling time is during 09:00-14:59, then Hour_2 = 1. 


	Hour_3 
	Hour_3 
	Hour_3 

	If cycling time is during 15:00-17:59, then Hour_3 = 1. 
	If cycling time is during 15:00-17:59, then Hour_3 = 1. 


	Hour_4 
	Hour_4 
	Hour_4 

	If cycling time is during 18:00-19:59, then Hour_4 = 1. 
	If cycling time is during 18:00-19:59, then Hour_4 = 1. 


	Hour_5 
	Hour_5 
	Hour_5 

	If cycling time is during 20:00-23:59, then Hour_5 = 1. 
	If cycling time is during 20:00-23:59, then Hour_5 = 1. 


	Weekday  
	Weekday  
	Weekday  

	If bike on a weekday, then weekday = 1. 
	If bike on a weekday, then weekday = 1. 


	Road Characteristics 
	Road Characteristics 
	Road Characteristics 


	Speed Limit 
	Speed Limit 
	Speed Limit 

	The posted speed limit on a roadway segment. 
	The posted speed limit on a roadway segment. 


	RouteClass1 
	RouteClass1 
	RouteClass1 

	Interstate 
	Interstate 


	RouteClass2 
	RouteClass2 
	RouteClass2 

	US route 
	US route 


	RouteClass3 
	RouteClass3 
	RouteClass3 

	NC route 
	NC route 


	RouteClass4 
	RouteClass4 
	RouteClass4 

	Secondary route 
	Secondary route 


	MPLength 
	MPLength 
	MPLength 

	The length of the segment in miles. 
	The length of the segment in miles. 


	ThruLaneCo 
	ThruLaneCo 
	ThruLaneCo 

	The number of through lanes. 
	The number of through lanes. 


	Oneway 
	Oneway 
	Oneway 

	If the road segment is one way, then oneway = 1 
	If the road segment is one way, then oneway = 1 


	Sociodemographic Characteristics 
	Sociodemographic Characteristics 
	Sociodemographic Characteristics 




	Variable 
	Variable 
	Variable 
	Variable 
	Variable 

	Description 
	Description 



	TOTPOP_CY 
	TOTPOP_CY 
	TOTPOP_CY 
	TOTPOP_CY 

	Total population in each census block. 
	Total population in each census block. 


	MEDAGE_CY 
	MEDAGE_CY 
	MEDAGE_CY 

	The median age in each census block. 
	The median age in each census block. 


	MEDHINC_CY 
	MEDHINC_CY 
	MEDHINC_CY 

	Median household income in each census block. 
	Median household income in each census block. 


	Total_Hous 
	Total_Hous 
	Total_Hous 

	Total households in each census block. 
	Total households in each census block. 


	TotalFamil 
	TotalFamil 
	TotalFamil 

	Total families in each census block. 
	Total families in each census block. 


	FamilyPove 
	FamilyPove 
	FamilyPove 

	Family poverty rate in each census block. 
	Family poverty rate in each census block. 


	Geometry 
	Geometry 
	Geometry 


	Slope  
	Slope  
	Slope  

	The slope of a road segment at intersection.  
	The slope of a road segment at intersection.  


	Bicycle Facilities 
	Bicycle Facilities 
	Bicycle Facilities 


	B_offstree 
	B_offstree 
	B_offstree 

	Off street paths 
	Off street paths 


	B_bikelane 
	B_bikelane 
	B_bikelane 

	Bike lanes 
	Bike lanes 


	B_signedbi 
	B_signedbi 
	B_signedbi 

	Signed bike lanes 
	Signed bike lanes 


	B_suggeste 
	B_suggeste 
	B_suggeste 

	Suggested bike routes 
	Suggested bike routes 


	B_suggest0 
	B_suggest0 
	B_suggest0 

	Suggested bike routes with low comfort 
	Suggested bike routes with low comfort 


	B_greenway 
	B_greenway 
	B_greenway 

	Greenway 
	Greenway 




	 
	All the factors presented in Table 5.1 are included in the ordered logit model to determine the probability of each segment being selected by the Strava users. The maximum likelihood estimation method is utilized to estimate the model parameters and the thresholds in the ordered logit model. This process is conducted in SAS 9.4. To keep the variables that have a significant impact on the level of bicycle counts on each road segment, the backward selection demand is used in the model estimation procedure. A 
	Table 5.2  Summary of Backward Elimination 
	Summary of Backward Elimination 
	Summary of Backward Elimination 
	Summary of Backward Elimination 
	Summary of Backward Elimination 
	Summary of Backward Elimination 


	Step 
	Step 
	Step 

	Effect Removed 
	Effect Removed 

	DF 
	DF 

	Wald Chi-Square 
	Wald Chi-Square 

	Pr > ChiSq 
	Pr > ChiSq 



	1 
	1 
	1 
	1 

	B_Hour_0 
	B_Hour_0 

	1 
	1 

	0.0000 
	0.0000 

	0.9993 
	0.9993 


	2 
	2 
	2 

	B_offstree 
	B_offstree 

	1 
	1 

	0.0000 
	0.0000 

	0.9951 
	0.9951 


	3 
	3 
	3 

	B_Hour_4 
	B_Hour_4 

	1 
	1 

	0.0027 
	0.0027 

	0.9586 
	0.9586 


	4 
	4 
	4 

	SpeedLimit 
	SpeedLimit 

	1 
	1 

	0.1222 
	0.1222 

	0.7266 
	0.7266 


	5 
	5 
	5 

	FamilyPove 
	FamilyPove 

	1 
	1 

	0.4548 
	0.4548 

	0.5001 
	0.5001 




	Summary of Backward Elimination 
	Summary of Backward Elimination 
	Summary of Backward Elimination 
	Summary of Backward Elimination 
	Summary of Backward Elimination 


	Step 
	Step 
	Step 

	Effect Removed 
	Effect Removed 

	DF 
	DF 

	Wald Chi-Square 
	Wald Chi-Square 

	Pr > ChiSq 
	Pr > ChiSq 



	6 
	6 
	6 
	6 

	TOTPOP_CY 
	TOTPOP_CY 

	1 
	1 

	0.4030 
	0.4030 

	0.5255 
	0.5255 


	7 
	7 
	7 

	B_bikelane 
	B_bikelane 

	1 
	1 

	0.6974 
	0.6974 

	0.4037 
	0.4037 




	 
	Table 5.3  Ordered Logit Model Estimation Results 
	Analysis of Maximum Likelihood Estimates 
	Analysis of Maximum Likelihood Estimates 
	Analysis of Maximum Likelihood Estimates 
	Analysis of Maximum Likelihood Estimates 
	Analysis of Maximum Likelihood Estimates 


	Parameter 
	Parameter 
	Parameter 

	  
	  

	DF 
	DF 

	Estimate 
	Estimate 

	Standard Error 
	Standard Error 

	Wald Chi-Square 
	Wald Chi-Square 

	Pr > ChiSq 
	Pr > ChiSq 



	Intercept 
	Intercept 
	Intercept 
	Intercept 

	5 
	5 

	1 
	1 

	1.6165 
	1.6165 

	1.0468 
	1.0468 

	2.3847 
	2.3847 

	0.1225 
	0.1225 


	Intercept 
	Intercept 
	Intercept 

	4 
	4 

	1 
	1 

	3.6935 
	3.6935 

	1.0534 
	1.0534 

	12.2937 
	12.2937 

	0.0005 
	0.0005 


	Intercept 
	Intercept 
	Intercept 

	3 
	3 

	1 
	1 

	4.0366 
	4.0366 

	1.0565 
	1.0565 

	14.5970 
	14.5970 

	0.0001 
	0.0001 


	Intercept 
	Intercept 
	Intercept 

	2 
	2 

	1 
	1 

	5.4232 
	5.4232 

	1.0882 
	1.0882 

	24.8353 
	24.8353 

	<.0001 
	<.0001 


	B_weekday 
	B_weekday 
	B_weekday 

	  
	  

	1 
	1 

	-4.2510 
	-4.2510 

	0.3204 
	0.3204 

	176.0312 
	176.0312 

	<.0001 
	<.0001 


	B_Hour_1 
	B_Hour_1 
	B_Hour_1 

	  
	  

	1 
	1 

	1.0789 
	1.0789 

	0.4326 
	0.4326 

	6.2192 
	6.2192 

	0.0126 
	0.0126 


	B_Hour_2 
	B_Hour_2 
	B_Hour_2 

	  
	  

	1 
	1 

	1.1850 
	1.1850 

	0.4193 
	0.4193 

	7.9859 
	7.9859 

	0.0047 
	0.0047 


	B_Hour_3 
	B_Hour_3 
	B_Hour_3 

	  
	  

	1 
	1 

	2.9484 
	2.9484 

	0.4137 
	0.4137 

	50.7871 
	50.7871 

	<.0001 
	<.0001 


	MPLength 
	MPLength 
	MPLength 

	  
	  

	1 
	1 

	1.0827 
	1.0827 

	0.4673 
	0.4673 

	5.3673 
	5.3673 

	0.0205 
	0.0205 


	ThruLaneCo 
	ThruLaneCo 
	ThruLaneCo 

	  
	  

	1 
	1 

	0.6786 
	0.6786 

	0.0853 
	0.0853 

	63.2215 
	63.2215 

	<.0001 
	<.0001 


	MEDAGE_CY 
	MEDAGE_CY 
	MEDAGE_CY 

	  
	  

	1 
	1 

	0.0244 
	0.0244 

	0.0115 
	0.0115 

	4.4958 
	4.4958 

	0.0340 
	0.0340 


	MEDHINC_CY 
	MEDHINC_CY 
	MEDHINC_CY 

	  
	  

	1 
	1 

	0.000032 
	0.000032 

	2.773E-6 
	2.773E-6 

	129.7401 
	129.7401 

	<.0001 
	<.0001 


	Total_Hous 
	Total_Hous 
	Total_Hous 

	  
	  

	1 
	1 

	0.00119 
	0.00119 

	0.000345 
	0.000345 

	11.8828 
	11.8828 

	0.0006 
	0.0006 


	TotalFamil 
	TotalFamil 
	TotalFamil 

	  
	  

	1 
	1 

	-0.00133 
	-0.00133 

	0.000470 
	0.000470 

	8.0179 
	8.0179 

	0.0046 
	0.0046 


	Slope 
	Slope 
	Slope 

	  
	  

	1 
	1 

	-0.0506 
	-0.0506 

	0.00959 
	0.00959 

	27.8175 
	27.8175 

	<.0001 
	<.0001 


	B_signedbi 
	B_signedbi 
	B_signedbi 

	  
	  

	1 
	1 

	-1.1172 
	-1.1172 

	0.1814 
	0.1814 

	37.9421 
	37.9421 

	<.0001 
	<.0001 


	B_suggeste 
	B_suggeste 
	B_suggeste 

	  
	  

	1 
	1 

	0.7100 
	0.7100 

	0.3414 
	0.3414 

	4.3260 
	4.3260 

	0.0375 
	0.0375 


	B_suggest0 
	B_suggest0 
	B_suggest0 

	  
	  

	1 
	1 

	-1.8420 
	-1.8420 

	0.3542 
	0.3542 

	27.0457 
	27.0457 

	<.0001 
	<.0001 


	B_greenway 
	B_greenway 
	B_greenway 

	  
	  

	1 
	1 

	2.6567 
	2.6567 

	1.0285 
	1.0285 

	6.6720 
	6.6720 

	0.0098 
	0.0098 


	RouteClass1 
	RouteClass1 
	RouteClass1 

	  
	  

	1 
	1 

	-0.6356 
	-0.6356 

	0.2719 
	0.2719 

	5.4624 
	5.4624 

	0.0194 
	0.0194 


	RouteClass2 
	RouteClass2 
	RouteClass2 

	  
	  

	1 
	1 

	0.8828 
	0.8828 

	0.2390 
	0.2390 

	13.6409 
	13.6409 

	0.0002 
	0.0002 


	RouteClass3 
	RouteClass3 
	RouteClass3 

	  
	  

	1 
	1 

	-0.3567 
	-0.3567 

	0.1395 
	0.1395 

	6.5407 
	6.5407 

	0.0105 
	0.0105 


	Oneway 
	Oneway 
	Oneway 

	  
	  

	1 
	1 

	0.9971 
	0.9971 

	0.1553 
	0.1553 

	41.2258 
	41.2258 

	<.0001 
	<.0001 




	 
	Table 5.4  Model Fit Statistics 
	Criterion 
	Criterion 
	Criterion 
	Criterion 
	Criterion 

	Intercept Only 
	Intercept Only 

	Intercept and Covariates 
	Intercept and Covariates 



	AIC 
	AIC 
	AIC 
	AIC 

	7480.648 
	7480.648 

	5802.726 
	5802.726 


	SC 
	SC 
	SC 

	7522.162 
	7522.162 

	6114.085 
	6114.085 


	-2 Log L 
	-2 Log L 
	-2 Log L 

	7472.648 
	7472.648 

	5742.726 
	5742.726 




	 
	According to the backward elimination summary in Table 5.2, variables including time period from 00:00 to 05:59 and from 18:00 to 19:59, speed limit, off street paths, bike lanes, speed limit, total population, and family poverty rate do not have a significant impact on the level of bicycle counts on each road segment. Based on the model estimation results presented in Table 5.3, variables including weekday, total family, slope, signed bike lanes, suggested bike routes with low comfort, interstate route, an
	5.3 Partial Proportional Odds Model 
	5.3.1 PPO Model Structure 
	The partial proportional odds model is developed based on the ordered logit model. In ordered logit model, the proportional odds (PO) assumption is subjected. It can be interpreted that the estimated parameters are restricted to be same across all the alternatives. However, this assumption is unrealistic. To relax the assumption, the PPO model is developed.  
	The explanatory variables associated with each road segment are categorized into two groups. One contains parameters satisfying the PO assumption, which is presented as vector Xi, the other includes parameters that violate the PO assumption which is shown as vector Zi. The variables that violate the PO assumption are able to affect the response variables differently, while others remaining fixed parameters have the same effect across different levels. Thus, the PPO model with logit function is presented as 
	𝑃(𝑌𝑖≥𝑗)=exp[𝜃𝑗−(𝑋𝑖′𝛽𝑗+𝑍𝑖′𝛾𝑗)]1+exp[𝜃𝑗−(𝑋𝑖′𝛽𝑗+𝑍𝑖′𝛾𝑗)]                                    Eq. (4) 
	where j denotes the level of bicycle counts on each road segment and Yi represents the bicycle counts for road segment i, β and 𝛾 represents the coefficients that will be estimated, and 𝜃𝑗 demonstrates the threshold for jth cumulative logit.  
	To examine whether the explanatory variables violate the PO assumption or not, the Wald Chi-square tests are utilized during the model development. This procedure helps divide the explanatory variables into two groups which belong to either vector Xi or vector Zi. 
	5.3.2 PPO Model Results 
	This PPO model is built based on the ORL model developed in Section 5.2. A series of Wald Chi-square are conducted to test the explanatory variables that violate the PO assumption. These variables are presented in Table 5.5.  
	Table 5.5  Linear Hypotheses Testing Results 
	Label 
	Label 
	Label 
	Label 
	Label 

	Wald Chi-Square 
	Wald Chi-Square 

	Pr > ChiSq 
	Pr > ChiSq 



	Hour_1_po 
	Hour_1_po 
	Hour_1_po 
	Hour_1_po 

	38.4832 
	38.4832 

	<.0001 
	<.0001 


	ThruLaneCo_po 
	ThruLaneCo_po 
	ThruLaneCo_po 

	10.1651 
	10.1651 

	0.0172 
	0.0172 


	MEDHINC_CY_po 
	MEDHINC_CY_po 
	MEDHINC_CY_po 

	33.7202 
	33.7202 

	<.0001 
	<.0001 


	Total_hous_po 
	Total_hous_po 
	Total_hous_po 

	25.5679 
	25.5679 

	<.0001 
	<.0001 


	TotalFamil_po 
	TotalFamil_po 
	TotalFamil_po 

	37.5464 
	37.5464 

	<.0001 
	<.0001 


	B_suggeste_po 
	B_suggeste_po 
	B_suggeste_po 

	12.4505 
	12.4505 

	0.0060 
	0.0060 


	RouteClass2_po 
	RouteClass2_po 
	RouteClass2_po 

	27.5757 
	27.5757 

	<.0001 
	<.0001 


	oneway_po 
	oneway_po 
	oneway_po 

	17.0930 
	17.0930 

	0.0007 
	0.0007 




	 
	Thus, variables including time period from 6 am to 9 am, the number of through lanes, median household income, total households, total families, suggested bike routes, US routes, and one-way road violate the PO assumption and have different effects across different levels.  
	The PPO model estimation results and the fit statistics are presented in Table 5.6 and Table 5.7.  
	Table 5.6  Partial Proportional Odds Model Estimation Results 
	Analysis of Maximum Likelihood Estimates 
	Analysis of Maximum Likelihood Estimates 
	Analysis of Maximum Likelihood Estimates 
	Analysis of Maximum Likelihood Estimates 
	Analysis of Maximum Likelihood Estimates 


	Parameter 
	Parameter 
	Parameter 

	Level 
	Level 

	Estimate 
	Estimate 

	Standard Error 
	Standard Error 

	Wald Chi-Square 
	Wald Chi-Square 

	Pr > ChiSq 
	Pr > ChiSq 



	Intercept 
	Intercept 
	Intercept 
	Intercept 

	5 
	5 

	2.9121 
	2.9121 

	2.1919 
	2.1919 

	1.7651 
	1.7651 

	0.1840 
	0.1840 


	Intercept 
	Intercept 
	Intercept 

	4 
	4 

	8.2183 
	8.2183 

	1.2527 
	1.2527 

	43.0387 
	43.0387 

	<.0001 
	<.0001 


	Intercept 
	Intercept 
	Intercept 

	3 
	3 

	9.9807 
	9.9807 

	5.1830 
	5.1830 

	3.7081 
	3.7081 

	0.0541 
	0.0541 


	Intercept 
	Intercept 
	Intercept 

	2 
	2 

	10.7126 
	10.7126 

	1.5216 
	1.5216 

	49.5631 
	49.5631 

	<.0001 
	<.0001 


	Weekday 
	Weekday 
	Weekday 

	  
	  

	-7.0154 
	-7.0154 

	1.2122 
	1.2122 

	33.4937 
	33.4937 

	<.0001 
	<.0001 


	Hour_1 
	Hour_1 
	Hour_1 

	5 
	5 

	-0.2021 
	-0.2021 

	0.1664 
	0.1664 

	1.4750 
	1.4750 

	0.2246 
	0.2246 




	Analysis of Maximum Likelihood Estimates 
	Analysis of Maximum Likelihood Estimates 
	Analysis of Maximum Likelihood Estimates 
	Analysis of Maximum Likelihood Estimates 
	Analysis of Maximum Likelihood Estimates 


	Parameter 
	Parameter 
	Parameter 

	Level 
	Level 

	Estimate 
	Estimate 

	Standard Error 
	Standard Error 

	Wald Chi-Square 
	Wald Chi-Square 

	Pr > ChiSq 
	Pr > ChiSq 



	Hour_1 
	Hour_1 
	Hour_1 
	Hour_1 

	4 
	4 

	3.1647 
	3.1647 

	0.5676 
	0.5676 

	31.0867 
	31.0867 

	<.0001 
	<.0001 


	Hour_1 
	Hour_1 
	Hour_1 

	3 
	3 

	0.3418 
	0.3418 

	1.7064 
	1.7064 

	0.0401 
	0.0401 

	0.8412 
	0.8412 


	Hour_1 
	Hour_1 
	Hour_1 

	2 
	2 

	-0.0473 
	-0.0473 

	2.3269 
	2.3269 

	0.0004 
	0.0004 

	0.9838 
	0.9838 


	Hour_3 
	Hour_3 
	Hour_3 

	  
	  

	1.7205 
	1.7205 

	0.1034 
	0.1034 

	276.6263 
	276.6263 

	<.0001 
	<.0001 


	ThruLaneCo 
	ThruLaneCo 
	ThruLaneCo 

	5 
	5 

	0.5160 
	0.5160 

	0.0711 
	0.0711 

	52.7303 
	52.7303 

	<.0001 
	<.0001 


	ThruLaneCo 
	ThruLaneCo 
	ThruLaneCo 

	4 
	4 

	-0.2532 
	-0.2532 

	0.2544 
	0.2544 

	0.9905 
	0.9905 

	0.3196 
	0.3196 


	ThruLaneCo 
	ThruLaneCo 
	ThruLaneCo 

	3 
	3 

	-0.1234 
	-0.1234 

	0.4373 
	0.4373 

	0.0796 
	0.0796 

	0.7778 
	0.7778 


	ThruLaneCo 
	ThruLaneCo 
	ThruLaneCo 

	2 
	2 

	-0.5763 
	-0.5763 

	1.2314 
	1.2314 

	0.2190 
	0.2190 

	0.6398 
	0.6398 


	MEDHINC_CY 
	MEDHINC_CY 
	MEDHINC_CY 

	5 
	5 

	0.000031 
	0.000031 

	2.66E-6 
	2.66E-6 

	138.3050 
	138.3050 

	<.0001 
	<.0001 


	MEDHINC_CY 
	MEDHINC_CY 
	MEDHINC_CY 

	4 
	4 

	0.000034 
	0.000034 

	8.519E-6 
	8.519E-6 

	15.7006 
	15.7006 

	<.0001 
	<.0001 


	MEDHINC_CY 
	MEDHINC_CY 
	MEDHINC_CY 

	3 
	3 

	0.000154 
	0.000154 

	0.000022 
	0.000022 

	50.5355 
	50.5355 

	<.0001 
	<.0001 


	MEDHINC_CY 
	MEDHINC_CY 
	MEDHINC_CY 

	2 
	2 

	0.000109 
	0.000109 

	0.000035 
	0.000035 

	9.8945 
	9.8945 

	0.0017 
	0.0017 


	Total_Hous 
	Total_Hous 
	Total_Hous 

	5 
	5 

	0.00105 
	0.00105 

	0.000334 
	0.000334 

	9.8621 
	9.8621 

	0.0017 
	0.0017 


	Total_Hous 
	Total_Hous 
	Total_Hous 

	4 
	4 

	0.00859 
	0.00859 

	0.00280 
	0.00280 

	9.4126 
	9.4126 

	0.0022 
	0.0022 


	Total_Hous 
	Total_Hous 
	Total_Hous 

	3 
	3 

	0.0277 
	0.0277 

	0.00534 
	0.00534 

	26.9469 
	26.9469 

	<.0001 
	<.0001 


	Total_Hous 
	Total_Hous 
	Total_Hous 

	2 
	2 

	0.0373 
	0.0373 

	0.0206 
	0.0206 

	3.2672 
	3.2672 

	0.0707 
	0.0707 


	TotalFamil 
	TotalFamil 
	TotalFamil 

	5 
	5 

	-0.00120 
	-0.00120 

	0.000458 
	0.000458 

	6.8452 
	6.8452 

	0.0089 
	0.0089 


	TotalFamil 
	TotalFamil 
	TotalFamil 

	4 
	4 

	-0.0122 
	-0.0122 

	0.00377 
	0.00377 

	10.4502 
	10.4502 

	0.0012 
	0.0012 


	TotalFamil 
	TotalFamil 
	TotalFamil 

	3 
	3 

	-0.0389 
	-0.0389 

	0.00617 
	0.00617 

	39.7655 
	39.7655 

	<.0001 
	<.0001 


	TotalFamil 
	TotalFamil 
	TotalFamil 

	2 
	2 

	-0.0530 
	-0.0530 

	0.0253 
	0.0253 

	4.3881 
	4.3881 

	0.0362 
	0.0362 


	Slope 
	Slope 
	Slope 

	  
	  

	-0.0575 
	-0.0575 

	0.00891 
	0.00891 

	41.5729 
	41.5729 

	<.0001 
	<.0001 


	B_signedbi 
	B_signedbi 
	B_signedbi 

	  
	  

	-1.0671 
	-1.0671 

	0.1841 
	0.1841 

	33.6052 
	33.6052 

	<.0001 
	<.0001 


	B_suggeste 
	B_suggeste 
	B_suggeste 

	5 
	5 

	2.8458 
	2.8458 

	0.9343 
	0.9343 

	9.2777 
	9.2777 

	0.0023 
	0.0023 


	B_suggeste 
	B_suggeste 
	B_suggeste 

	4 
	4 

	2.8330 
	2.8330 

	1.1958 
	1.1958 

	5.6128 
	5.6128 

	0.0178 
	0.0178 


	B_suggeste 
	B_suggeste 
	B_suggeste 

	3 
	3 

	-3.4416 
	-3.4416 

	1.9230 
	1.9230 

	3.2029 
	3.2029 

	0.0735 
	0.0735 


	B_suggeste 
	B_suggeste 
	B_suggeste 

	2 
	2 

	-0.4743 
	-0.4743 

	2.3583 
	2.3583 

	0.0404 
	0.0404 

	0.8406 
	0.8406 


	B_suggest0 
	B_suggest0 
	B_suggest0 

	  
	  

	-4.0556 
	-4.0556 

	0.9381 
	0.9381 

	18.6881 
	18.6881 

	<.0001 
	<.0001 


	B_greenway 
	B_greenway 
	B_greenway 

	  
	  

	3.5327 
	3.5327 

	1.4672 
	1.4672 

	5.7973 
	5.7973 

	0.0161 
	0.0161 


	RouteClass2 
	RouteClass2 
	RouteClass2 

	5 
	5 

	1.4188 
	1.4188 

	0.2791 
	0.2791 

	25.8462 
	25.8462 

	<.0001 
	<.0001 




	Analysis of Maximum Likelihood Estimates 
	Analysis of Maximum Likelihood Estimates 
	Analysis of Maximum Likelihood Estimates 
	Analysis of Maximum Likelihood Estimates 
	Analysis of Maximum Likelihood Estimates 


	Parameter 
	Parameter 
	Parameter 

	Level 
	Level 

	Estimate 
	Estimate 

	Standard Error 
	Standard Error 

	Wald Chi-Square 
	Wald Chi-Square 

	Pr > ChiSq 
	Pr > ChiSq 



	RouteClass2 
	RouteClass2 
	RouteClass2 
	RouteClass2 

	4 
	4 

	-3.7311 
	-3.7311 

	1.2443 
	1.2443 

	8.9915 
	8.9915 

	0.0027 
	0.0027 


	RouteClass2 
	RouteClass2 
	RouteClass2 

	3 
	3 

	1.8386 
	1.8386 

	2.2886 
	2.2886 

	0.6454 
	0.6454 

	0.4218 
	0.4218 


	RouteClass2 
	RouteClass2 
	RouteClass2 

	2 
	2 

	0.3602 
	0.3602 

	2.9464 
	2.9464 

	0.0149 
	0.0149 

	0.9027 
	0.9027 


	Oneway 
	Oneway 
	Oneway 

	5 
	5 

	0.8081 
	0.8081 

	0.1259 
	0.1259 

	41.1903 
	41.1903 

	<.0001 
	<.0001 


	Oneway 
	Oneway 
	Oneway 

	4 
	4 

	3.4399 
	3.4399 

	0.8487 
	0.8487 

	16.4278 
	16.4278 

	<.0001 
	<.0001 


	Oneway 
	Oneway 
	Oneway 

	3 
	3 

	5.2436 
	5.2436 

	1.3215 
	1.3215 

	15.7451 
	15.7451 

	<.0001 
	<.0001 


	Oneway 
	Oneway 
	Oneway 

	2 
	2 

	1.1925 
	1.1925 

	3.5373 
	3.5373 

	0.1136 
	0.1136 

	0.7360 
	0.7360 




	 
	Table 5.7  Model Fit Statistics 
	Criterion 
	Criterion 
	Criterion 
	Criterion 
	Criterion 

	Intercept Only 
	Intercept Only 

	Intercept and Covariates 
	Intercept and Covariates 



	AIC 
	AIC 
	AIC 
	AIC 

	7480.648 
	7480.648 

	5521.322 
	5521.322 


	SC 
	SC 
	SC 

	7522.162 
	7522.162 

	5957.225 
	5957.225 


	-2 Log L 
	-2 Log L 
	-2 Log L 

	7472.648 
	7472.648 

	5437.322 
	5437.322 




	 
	Based on the PPO model estimation results presented in Table 5.6, variables that satisfy the PO assumption including weekday, time period from 15:00 to 17:59, slope, signed bike lanes, suggested bike routes with low comfort, and greenways remain the same interpretation as the previous developed ORL model. Other variables seem to have different effects across the outcomes. The detailed model interpretation and model comparison will be presented in Section 5.6.  
	The model fit statistics provided in Table 5.7 indicate that the -2 LogL for the PPO model is less than that of the ORL model and is less than the constant-only model. It means the PPO model has a better fitness for the level of bicycle counts. To better examine the goodness of fit for this PPO model, the likelihood ratio index ρ2 is utilized and presented in the following equation: 
	𝜌2=1−𝐿𝐿(𝛽̂)𝐿𝐿(𝑐)                                                        Eq. (5) 
	where 𝐿𝐿(𝛽̂) is the log-likelihood value at convergence and 𝐿𝐿(𝑐) represents the log-likelihood value for constant-only model. Based on the results presented in Table 5.7, the likelihood ratio index ρ2 is 0.27. According to Train (2009)’s research study, a better model is associated with a higher value of ρ2, and it is good enough to have ρ2 from 0.2 to 0.4 in real world case studies. Therefore, it can be concluded that the PPO model is good enough to analyze the link-based route choice behavior for t
	5.4 Multinomial Logit Model 
	5.4.1 MNL Model Structure 
	The multinomial logit model developed in this section is used to analyze the link-based bicyclist route choice behavior. The MNL model is usually based on the random utility theory (Train, 2009). It assumes that the alternative which yields the maximum utility is always selected. The utility function of the MNL model comprises an observed utility and an unobserved error term, which are shown in Equation (1). 
	  
	  
	                                                                 Eq. (6) 
	InlineShape

	where Uin is the utility function of the level of bicycle counts i for the road segment n, Vin is the observed utility of level i for the segment n, εin is the unobserved error term of level i for the segment n. Vin is usually taken as a linear utility function as shown in Equation (7). 
	                                                          Eq. (7) 
	                                                          Eq. (7) 
	InlineShape

	where Xink is the kth attribute variable of level of bicycle counts i for road segment n, N is the total number of the attributes, β0 is the constant term, and βk is the coefficient of the kth attribute variable.  
	It is assumed that ε conforms to a Gumbel distribution, and attributes are independent of each other. Then the probability of the level of bicycle counts for each road segment for this research study can be derived as follows: 
	                                                                 Eq. (8) 
	                                                                 Eq. (8) 
	InlineShape

	5.4.2 MNL Model Results 
	The MNL model estimation result is presented in Table 5.8, in which the parameter estimates are shown for each level of the bicycle counts. One category is selected as the base case for this MNL model which is the low level of the bicycle counts. Variables that do not have significant impacts on the bicycle counts at 0.05 level are removed from the model utilizing the backward selection method.  
	Table 5.8  Multinomial Logit Model Estimation Results 
	Parameter Estimates 
	Parameter Estimates 
	Parameter Estimates 
	Parameter Estimates 
	Parameter Estimates 


	Parameter 
	Parameter 
	Parameter 

	Level  
	Level  

	Estimate 
	Estimate 

	Standard Error 
	Standard Error 

	t Value 
	t Value 

	Approx Pr > |t| 
	Approx Pr > |t| 



	Constant2 
	Constant2 
	Constant2 
	Constant2 

	2 
	2 

	2.3112 
	2.3112 

	0.4306 
	0.4306 

	5.37 
	5.37 

	<.0001 
	<.0001 


	Constant3 
	Constant3 
	Constant3 

	3 
	3 

	-2.4150 
	-2.4150 

	1.0291 
	1.0291 

	-2.35 
	-2.35 

	0.0189 
	0.0189 


	Constant4 
	Constant4 
	Constant4 

	4 
	4 

	5.9278 
	5.9278 

	0.5980 
	0.5980 

	9.91 
	9.91 

	<.0001 
	<.0001 




	Parameter Estimates 
	Parameter Estimates 
	Parameter Estimates 
	Parameter Estimates 
	Parameter Estimates 


	Parameter 
	Parameter 
	Parameter 

	Level  
	Level  

	Estimate 
	Estimate 

	Standard Error 
	Standard Error 

	t Value 
	t Value 

	Approx Pr > |t| 
	Approx Pr > |t| 



	Constant5 
	Constant5 
	Constant5 
	Constant5 

	5 
	5 

	6.8923 
	6.8923 

	0.7711 
	0.7711 

	8.94 
	8.94 

	<.0001 
	<.0001 


	Weekday 
	Weekday 
	Weekday 

	5 
	5 

	-4.1488 
	-4.1488 

	0.3084 
	0.3084 

	-13.45 
	-13.45 

	<.0001 
	<.0001 


	Hour_2 
	Hour_2 
	Hour_2 

	2 
	2 

	-1.7464 
	-1.7464 

	0.4134 
	0.4134 

	-4.22 
	-4.22 

	<.0001 
	<.0001 


	Hour_2 
	Hour_2 
	Hour_2 

	3 
	3 

	-1.4990 
	-1.4990 

	0.5230 
	0.5230 

	-2.87 
	-2.87 

	0.0042 
	0.0042 


	Hour_2 
	Hour_2 
	Hour_2 

	5 
	5 

	1.2087 
	1.2087 

	0.5109 
	0.5109 

	2.37 
	2.37 

	0.0180 
	0.0180 


	Hour_3 
	Hour_3 
	Hour_3 

	5 
	5 

	1.8764 
	1.8764 

	0.4731 
	0.4731 

	3.97 
	3.97 

	<.0001 
	<.0001 


	Hour_4 
	Hour_4 
	Hour_4 

	4 
	4 

	-3.8902 
	-3.8902 

	0.4753 
	0.4753 

	-8.19 
	-8.19 

	<.0001 
	<.0001 


	MPLength 
	MPLength 
	MPLength 

	5 
	5 

	1.5708 
	1.5708 

	0.4601 
	0.4601 

	3.41 
	3.41 

	0.0006 
	0.0006 


	ThruLaneCo 
	ThruLaneCo 
	ThruLaneCo 

	5 
	5 

	0.5906 
	0.5906 

	0.0775 
	0.0775 

	7.62 
	7.62 

	<.0001 
	<.0001 


	TOTPOP_CY 
	TOTPOP_CY 
	TOTPOP_CY 

	3 
	3 

	0.000278 
	0.000278 

	0.000121 
	0.000121 

	2.31 
	2.31 

	0.0211 
	0.0211 


	MEDHINC_CY 
	MEDHINC_CY 
	MEDHINC_CY 

	3 
	3 

	0.0000402 
	0.0000402 

	7.6282E-6 
	7.6282E-6 

	5.27 
	5.27 

	<.0001 
	<.0001 


	MEDHINC_CY 
	MEDHINC_CY 
	MEDHINC_CY 

	5 
	5 

	0.0000360 
	0.0000360 

	2.7568E-6 
	2.7568E-6 

	13.06 
	13.06 

	<.0001 
	<.0001 


	Total_hous 
	Total_hous 
	Total_hous 

	4 
	4 

	0.005706 
	0.005706 

	0.001417 
	0.001417 

	4.03 
	4.03 

	<.0001 
	<.0001 


	Total_hous 
	Total_hous 
	Total_hous 

	5 
	5 

	0.006635 
	0.006635 

	0.001381 
	0.001381 

	4.81 
	4.81 

	<.0001 
	<.0001 


	TotalFamil 
	TotalFamil 
	TotalFamil 

	4 
	4 

	-0.007300 
	-0.007300 

	0.001749 
	0.001749 

	-4.17 
	-4.17 

	<.0001 
	<.0001 


	TotalFamil 
	TotalFamil 
	TotalFamil 

	5 
	5 

	-0.008146 
	-0.008146 

	0.001691 
	0.001691 

	-4.82 
	-4.82 

	<.0001 
	<.0001 


	Slope 
	Slope 
	Slope 

	4 
	4 

	0.0477 
	0.0477 

	0.009090 
	0.009090 

	5.25 
	5.25 

	<.0001 
	<.0001 


	B_suggest0 
	B_suggest0 
	B_suggest0 

	4 
	4 

	1.1859 
	1.1859 

	0.1312 
	0.1312 

	9.04 
	9.04 

	<.0001 
	<.0001 


	RouteClass2 
	RouteClass2 
	RouteClass2 

	4 
	4 

	-2.2344 
	-2.2344 

	0.3437 
	0.3437 

	-6.50 
	-6.50 

	<.0001 
	<.0001 


	RouteClass4 
	RouteClass4 
	RouteClass4 

	5 
	5 

	0.4541 
	0.4541 

	0.1313 
	0.1313 

	3.46 
	3.46 

	0.0005 
	0.0005 


	oneway 
	oneway 
	oneway 

	5 
	5 

	1.0411 
	1.0411 

	0.1432 
	0.1432 

	7.27 
	7.27 

	<.0001 
	<.0001 




	 
	According to the MNL model estimation results presented in Table 5.8. Variables that have significant impacts on bicycle counts contain weekday, time period from 9:00 to 14:59, time period from 15:00 to 17:59, time period from 18:00 to 19:59, the length of segment, the number of through lanes, total population, median household income, total households, total families, slope, suggested bike routes with low comfort, US route, secondary route, and one-way road. The explanatory variables kept in the MNL model 
	The MNL model fit summary is shown in Table 5.9. From the table, it can be seen that the log-likelihood value at convergence is -2774. Therefore, -2 LogL is calculated which equals to 5548. This value will be used for the model comparison in Section 5.6. 
	Table 5.9  Model Fit Summary 
	Number of Observations 
	Number of Observations 
	Number of Observations 
	Number of Observations 
	Number of Observations 

	237673 
	237673 



	Number of Cases 
	Number of Cases 
	Number of Cases 
	Number of Cases 

	1188365 
	1188365 


	Log Likelihood 
	Log Likelihood 
	Log Likelihood 

	-2774 
	-2774 


	Log Likelihood (LogL(c)) 
	Log Likelihood (LogL(c)) 
	Log Likelihood (LogL(c)) 

	-3736 
	-3736 


	AIC 
	AIC 
	AIC 

	5596 
	5596 


	Schwarz Criterion 
	Schwarz Criterion 
	Schwarz Criterion 

	5845 
	5845 




	5.5 Mixed Logit Model 
	The mixed logit model is different from the multinomial logit model because it allows explanatory variables to affect the mean of the random parameter distribution (Bhat 1998, Revelt and Train 1998, Bhat 2000, McFadden and Train 2000, Hensher and Greene 2003) and it can address the unobserved heterogeneity. Similar to MNL model, the linear utility function of the mixed logit model is shown in the following equation: 
	                                                          Eq. (9) 
	                                                          Eq. (9) 
	InlineShape

	where Uin denotes the utility function of the level of bicycle counts i on each road segment n, βin means a vector of coefficient estimates which are allowed to vary, Xin represents a vector of explanatory variables which affect the level of bicycle counts, and εin is the error term.  
	According to the research conducted by Train (2009), the mixed logit model structure is shown in the following equation: 
	                                        Eq. (10) 
	                                        Eq. (10) 
	InlineShape

	where f(β|φ) is the probability density function of β, and ϕ represents the parameter vector that shows the mean and variance of the density function. The distribution of β can be flexible or fixed, and can be any (e.g., normal, lognormal, uniform or triangular) distribution (Train 2009). In this research, the normal distribution is selected. If all the parameters are fixed, the mixed logit model will collapse into a simple multinomial logit model.  
	The MXL model is developed based on the MNL model. Subsequently, all variables in multinomial logit models are assumed to be randomly distributed at first and normal distribution is employed for all the variables in the MXL model. Then, a backward selection process is applied to determine the normally distributed parameters in the MXL model. Parameters will be 
	fixed if the standard deviation is not significantly different from zero at a level of significance of 0.5. 200 Halton draws are utilized during the simulation-based model estimation process. It is verified by some scholars that 200 Halton draws are sufficient and accurate for mixed logit model development (e.g., Koppelman et al. 2003). However, the number of observations (237673) is extremely large for the estimation of MXL model which is not time efficient. Therefore, the peak hour data are selected to an
	5.6 Model Comparison 
	This section compares the results of ORL, PPO, and MNL models developed in the previous sections. Indicators utilized for the model comparison include -2Log-likelihood, the Akaike’s information criterion (AIC), the Bayesian information criterion (BIC), and likelihood ratio index ρ2.  
	5.6.1 Indicators for Model Comparison 
	The most commonly used indicators for model comparison are -2Log-likelihood, AIC, BIC, and ρ2. To compare the models with same structure (e.g., ORL and PPO), all the indicators can be used. However, to compare models with different structures, it is not appropriate to utilize the likelihood values.  
	The values of AIC and BIC are calculated with the following equations: 
	AIC = 2p – 2LL                                                      Eq. (11) 
	BIC = pln(Q) – 2LL                                                    Eq. (12) 
	where p represents the number of parameters in the model, Q is the number of observations and LL denotes the log-likelihood value of the model. 
	Therefore, the four indicators for each model developed in the previous sections are presented in Table 5.10.  
	Table 5.10  Indicators for Model Comparison 
	Model 
	Model 
	Model 
	Model 
	Model 

	No. of Obs (Q) 
	No. of Obs (Q) 

	No. of Vars. (p) 
	No. of Vars. (p) 

	-2LogL 
	-2LogL 

	AIC 
	AIC 

	BIC 
	BIC 

	𝛒𝟐 
	𝛒𝟐 



	ORL 
	ORL 
	ORL 
	ORL 

	237673 
	237673 

	23 
	23 

	5743 
	5743 

	5789 
	5789 

	6028 
	6028 

	0.2315 
	0.2315 


	PPO 
	PPO 
	PPO 

	237673 
	237673 

	42 
	42 

	5437 
	5437 

	5521 
	5521 

	5957 
	5957 

	0.2724 
	0.2724 


	MNL 
	MNL 
	MNL 

	237673 
	237673 

	24 
	24 

	5548 
	5548 

	5596 
	5596 

	5845 
	5845 

	0.2575 
	0.2575 




	 
	Comparing the traditional ORL model to PPO model, the PPO has a smaller value of -2LogL than that of the ORL model, which indicates that PPO model outperforms the ORL model for fitting the bicycle count data in the City of Charlotte. To compare the three models with different structures, AIC and BIC values are utilized. Based on the values of AIC, PPO has 
	the smallest value among the three models, which reveals the best fitness of PPO model for this data. However, the BIC value of PPO is not the smallest. According to the BIC values, the MNL model performs better than PPO model, and PPO model is better than ORL model. The implication derived from the value of ρ2 demonstrates that the PPO model with the largest value performs better than the other two models. The reason that the BIC value of PPO model is larger than MNL’s can be interpreted that PPO model has
	5.6.2 Model Result Comparison 
	Based on the model estimation results in Table 5.3, Table 5.6, and Table 5.8, variables that have significant impacts on the link-based cyclist route choice behavior are identified and interpreted for all three models including ORL model, PPO model, and MNL model. The detailed analysis is provided as follows: 
	1. Temporal variables: 
	1. Temporal variables: 
	1. Temporal variables: 


	The cycling behavior varies with different time in terms of weekday/weekend and time of day. According to the model estimation results of three models, weekdays have a negative impact on the bicycle counts for each road segment especially for the category of high-level bicycle counts. It can be interpreted that Strava users in the City of Charlotte prefer to bike on weekends. And on weekdays, the probability of the high-level bicycle count occurrence will decrease. The conclusion of this result is probably 
	 
	2. Road characteristics: 
	2. Road characteristics: 
	2. Road characteristics: 


	Road characteristics are highly related to the cycling conditions which make the road characteristic factors significantly affect the link-based route choice. The explanatory variables that have a significant impact on the level of bicycle counts include the length of the road segment, number of through lanes, Interstate, US route, NC route, secondary 
	route, and one-way road. From the model estimation results, the length of the road segment has a positive impact on the bicycle counts. In other words, cyclists prefer to bike on long-distance road segments. This is probably because cyclists are willing to bike on roads with bicycle facilities (e.g., greenways) which tend to be long-distance road segments. The number of through lanes have a positive impact on the high-level bicycle counts for each road segment. It can be interpreted that cyclists tend to se
	 
	3. Sociodemographic characteristics: 
	3. Sociodemographic characteristics: 
	3. Sociodemographic characteristics: 


	Several sociodemographic characteristics have different impacts on the level of bicycle counts on each road segment in the City of Charlotte. According to the model estimation results, explanatory variables that have significant impacts on bicycle counts contain total population, median age, median household income, total household, and total families. Based on the MNL model estimation results, the total population in the certain areas (census blocks) has a positive impact on the average level of the bicycl
	 
	4. Geometry: 
	4. Geometry: 
	4. Geometry: 


	The slope is one of the impact factors that affect the bicycle counts significantly. In the three discrete choice models, this variable is examined to discover the correlation between the probability of selecting the road segment as a part of the cycling route and 
	the slope. The model estimation results reveal that slope has a negative impact on the level of bicycle counts on each road segment. It is not hard to understand that bicyclists prefer to bike on flat segments instead of steep segments.  
	 
	5. Bicycle facilities: 
	5. Bicycle facilities: 
	5. Bicycle facilities: 


	Bicycle facilities are the critical consideration for cycling activities. Bicyclists may have different preferences for different bicycle facilities which are able to provide higher cycling safety. Based on the model estimation results, bike facilities including signed bike lanes, suggested bike routes (both regular and low comfort), and greenways will have a significant impact on the bicycle counts. Signed bike lanes will affect the level of bicycle counts negatively, while greenways will increase the like
	5.7 Modeling Link-based Route Choice for Different Time Periods 
	Based on the methodology described in Section 5.6, two mixed logit models are developed to analyze the link-based route choice for different time periods (am peak hours and pm peak hours). The model estimation procedure is conducted in SAS 9.4. The MXL logit models developed in this section are based on the MNL models built for different time periods. The MXL model developed for AM peak hours collapses into a MNL model. Therefore, the indicators for different time periods are presented in Table 5.11.  
	Table 5.11  Indicators for Different Time Periods 
	Time Periods 
	Time Periods 
	Time Periods 
	Time Periods 
	Time Periods 

	Model 
	Model 

	No. of Obs (Q) 
	No. of Obs (Q) 

	No. of Vars. (p) 
	No. of Vars. (p) 

	-2LogL 
	-2LogL 

	AIC 
	AIC 

	BIC 
	BIC 

	𝛒𝟐 
	𝛒𝟐 



	AM Peak Hours 
	AM Peak Hours 
	AM Peak Hours 
	AM Peak Hours 

	MNL 
	MNL 

	43444 
	43444 

	24 
	24 

	798.71 
	798.71 

	846.71 
	846.71 

	1055.01 
	1055.01 

	0.1632 
	0.1632 


	PM Peak Hours 
	PM Peak Hours 
	PM Peak Hours 

	MXL 
	MXL 

	48447 
	48447 

	13 
	13 

	1789.96 
	1789.96 

	1815.96 
	1815.96 

	1930.21 
	1930.21 

	0.1690 
	0.1690 




	 
	In Section 5.7.1 and Section 5.7.2, the MNL model and the MXL for AM peak hours and PM peak hours respectively are presented. The analysis of the model estimation results demonstrates the impacts of different explanatory variables on the link-based route choice behavior for both peak hours.  
	5.7.1 AM Peak Hours 
	To analyze the link-based cyclist route choice behavior for AM peak hours, a MXL model is developed with low level of bicycle counts selected as the base. However, standard deviations of all the levels in the MXL model are not significantly different from zero at the 
	0.05 level. Therefore, this MXL model collapses into a MNL model. And the MNL model estimation results are shown in Table 5.12. 
	Table 5.12  MNL Model Estimation Results for AM Peak Hours 
	Parameter Estimates 
	Parameter Estimates 
	Parameter Estimates 
	Parameter Estimates 
	Parameter Estimates 


	Parameter 
	Parameter 
	Parameter 

	Level 
	Level 

	Estimate 
	Estimate 

	Standard Error 
	Standard Error 

	t Value 
	t Value 

	Approx Pr > |t| 
	Approx Pr > |t| 



	Constant 
	Constant 
	Constant 
	Constant 

	2 
	2 

	4.0770 
	4.0770 

	0.9704 
	0.9704 

	4.20 
	4.20 

	<.0001 
	<.0001 


	Constant 
	Constant 
	Constant 

	3 
	3 

	-11.5363 
	-11.5363 

	2.6558 
	2.6558 

	-4.34 
	-4.34 

	<.0001 
	<.0001 


	Constant 
	Constant 
	Constant 

	4 
	4 

	-1.3841 
	-1.3841 

	3.0688 
	3.0688 

	-0.45 
	-0.45 

	0.6520 
	0.6520 


	Constant 
	Constant 
	Constant 

	5 
	5 

	1.3761 
	1.3761 

	1.8488 
	1.8488 

	0.74 
	0.74 

	0.4567 
	0.4567 


	Weekday 
	Weekday 
	Weekday 

	5 
	5 

	-1.8047 
	-1.8047 

	0.4723 
	0.4723 

	-3.82 
	-3.82 

	0.0001 
	0.0001 


	MPLength 
	MPLength 
	MPLength 

	2 
	2 

	-12.1937 
	-12.1937 

	4.4586 
	4.4586 

	-2.73 
	-2.73 

	0.0062 
	0.0062 


	SpeedLimit 
	SpeedLimit 
	SpeedLimit 

	4 
	4 

	-0.1408 
	-0.1408 

	0.0620 
	0.0620 

	-2.27 
	-2.27 

	0.0232 
	0.0232 


	ThruLaneCo 
	ThruLaneCo 
	ThruLaneCo 

	3 
	3 

	2.1545 
	2.1545 

	0.8328 
	0.8328 

	2.59 
	2.59 

	0.0097 
	0.0097 


	ThruLaneCo 
	ThruLaneCo 
	ThruLaneCo 

	4 
	4 

	2.3905 
	2.3905 

	0.6926 
	0.6926 

	3.45 
	3.45 

	0.0006 
	0.0006 


	ThruLaneCo 
	ThruLaneCo 
	ThruLaneCo 

	5 
	5 

	2.0612 
	2.0612 

	0.6235 
	0.6235 

	3.31 
	3.31 

	0.0009 
	0.0009 


	MEDHINC_CY 
	MEDHINC_CY 
	MEDHINC_CY 

	3 
	3 

	0.0000820 
	0.0000820 

	0.0000186 
	0.0000186 

	4.40 
	4.40 

	<.0001 
	<.0001 


	MEDHINC_CY 
	MEDHINC_CY 
	MEDHINC_CY 

	4 
	4 

	0.0000422 
	0.0000422 

	0.0000156 
	0.0000156 

	2.70 
	2.70 

	0.0069 
	0.0069 


	MEDHINC_CY 
	MEDHINC_CY 
	MEDHINC_CY 

	5 
	5 

	0.0000667 
	0.0000667 

	0.0000142 
	0.0000142 

	4.70 
	4.70 

	<.0001 
	<.0001 


	Total_hous 
	Total_hous 
	Total_hous 

	2 
	2 

	-0.002737 
	-0.002737 

	0.001125 
	0.001125 

	-2.43 
	-2.43 

	0.0150 
	0.0150 


	Total_hous 
	Total_hous 
	Total_hous 

	5 
	5 

	0.003217 
	0.003217 

	0.001249 
	0.001249 

	2.58 
	2.58 

	0.0100 
	0.0100 


	TotalFamil 
	TotalFamil 
	TotalFamil 

	5 
	5 

	-0.005797 
	-0.005797 

	0.001417 
	0.001417 

	-4.09 
	-4.09 

	<.0001 
	<.0001 


	FamilyPove 
	FamilyPove 
	FamilyPove 

	3 
	3 

	6.1878 
	6.1878 

	2.8829 
	2.8829 

	2.15 
	2.15 

	0.0318 
	0.0318 


	FamilyPove 
	FamilyPove 
	FamilyPove 

	5 
	5 

	6.1456 
	6.1456 

	1.7811 
	1.7811 

	3.45 
	3.45 

	0.0006 
	0.0006 


	B_bikelane 
	B_bikelane 
	B_bikelane 

	2 
	2 

	1.9884 
	1.9884 

	0.8153 
	0.8153 

	2.44 
	2.44 

	0.0147 
	0.0147 


	B_bikelane 
	B_bikelane 
	B_bikelane 

	3 
	3 

	3.3529 
	3.3529 

	0.8581 
	0.8581 

	3.91 
	3.91 

	<.0001 
	<.0001 


	B_greenway 
	B_greenway 
	B_greenway 

	2 
	2 

	3.4877 
	3.4877 

	1.0441 
	1.0441 

	3.34 
	3.34 

	0.0008 
	0.0008 


	oneway 
	oneway 
	oneway 

	3 
	3 

	3.4908 
	3.4908 

	1.0794 
	1.0794 

	3.23 
	3.23 

	0.0012 
	0.0012 


	oneway 
	oneway 
	oneway 

	4 
	4 

	2.3318 
	2.3318 

	0.9354 
	0.9354 

	2.49 
	2.49 

	0.0127 
	0.0127 


	oneway 
	oneway 
	oneway 

	5 
	5 

	2.4732 
	2.4732 

	0.7732 
	0.7732 

	3.20 
	3.20 

	0.0014 
	0.0014 




	 
	1. Temporal variables: 
	1. Temporal variables: 
	1. Temporal variables: 


	Similar to the MNL model developed for the whole dataset, weekday has a negative impact on the high-level bicycle counts on each road segment. Same results can be concluded that the cyclists in the City of Charlotte prefer to bike on weekends. Weekdays will probably decrease the likelihood of the occurrence of high-level bicycle counts. 
	 
	2. Road characteristics: 
	2. Road characteristics: 
	2. Road characteristics: 


	The explanatory variables that have significant impacts on the level of bicycle counts are different from the variables in the MNL developed with the whole dataset. According to the model estimation results presented in Table 5.12, the road characteristic variables that have a significant impact on the level of bicycle counts contain the length of road segment, speed limit, number of through lanes, and one-way road. The length of the road segment has a negative impact on the low-average level of bicycle cou
	 
	3. Sociodemographic characteristics:  
	3. Sociodemographic characteristics:  
	3. Sociodemographic characteristics:  


	Changes are also found in the sociodemographic variables that have significant impacts on the level of bicycle counts for AM peak hours. Based on the results represented in Table 5.12, median household income, total households, total families, and family poverty rate will affect the bicycle counts significantly. The median household income has a positive impact on the average and above average levels which indicates that cyclists prefer to bike in the areas with higher household income. This result is consi
	 
	4. Bicycle facilities:  
	4. Bicycle facilities:  
	4. Bicycle facilities:  


	The bicycle facilities that have significant impacts on bicycle counts are different from the previous MNL model. Only bike lanes and greenways will affect the level of bicycle 
	counts significantly. They both have positive impact on the low-average or average level. It can be interpreted that bike lanes and greenways increase the likelihood of low-average or average level of bicycle counts. It can be assumed that a lot of cycling trips occurred during AM peak hours are in the center city where few cyclists bike on these two types of bicycle facilities.  
	5.7.2 PM Peak Hours 
	To explore the difference of impact factors between the cycling activities occurred during AM peak hours and PM peak hours, the MXL model is developed and the model estimation results are presented in Table 5.13. 
	Table 5.13  MXL Model Estimation Results for PM Peak Hours 
	Parameter Estimates 
	Parameter Estimates 
	Parameter Estimates 
	Parameter Estimates 
	Parameter Estimates 


	Parameter 
	Parameter 
	Parameter 

	Level 
	Level 

	Estimate 
	Estimate 

	Standard Error 
	Standard Error 

	t Value 
	t Value 

	Approx Pr > |t| 
	Approx Pr > |t| 



	Constant 
	Constant 
	Constant 
	Constant 

	2 
	2 

	1.0470 
	1.0470 

	0.5182 
	0.5182 

	2.02 
	2.02 

	0.0433 
	0.0433 


	Constant 
	Constant 
	Constant 

	3 
	3 

	-1.5170 
	-1.5170 

	0.8442 
	0.8442 

	-1.80 
	-1.80 

	0.0723 
	0.0723 


	Constant 
	Constant 
	Constant 

	4 
	4 

	0.1042 
	0.1042 

	1.0485 
	1.0485 

	0.10 
	0.10 

	0.9209 
	0.9209 


	Constant 
	Constant 
	Constant 

	5 
	5 

	8.8208 
	8.8208 

	0.7556 
	0.7556 

	11.67 
	11.67 

	<.0001 
	<.0001 


	SpeedLimit 
	SpeedLimit 
	SpeedLimit 

	4 
	4 

	-0.0518 
	-0.0518 

	0.0159 
	0.0159 

	-3.25 
	-3.25 

	0.0012 
	0.0012 


	TOTPOP_CY 
	TOTPOP_CY 
	TOTPOP_CY 

	5 
	5 

	-0.000402 
	-0.000402 

	0.000135 
	0.000135 

	-2.97 
	-2.97 

	0.0030 
	0.0030 


	MEDAGE_CY 
	MEDAGE_CY 
	MEDAGE_CY 

	4 
	4 

	0.0765 
	0.0765 

	0.0253 
	0.0253 

	3.02 
	3.02 

	0.0025 
	0.0025 


	MEDHINC_CY 
	MEDHINC_CY 
	MEDHINC_CY 

	4 
	4 

	-0.000104 
	-0.000104 

	0.0000117 
	0.0000117 

	-8.86 
	-8.86 

	<.0001 
	<.0001 


	Total_hous_M 
	Total_hous_M 
	Total_hous_M 

	3 
	3 

	0.001810 
	0.001810 

	0.002016 
	0.002016 

	0.90 
	0.90 

	0.3691 
	0.3691 


	Total_hous_S 
	Total_hous_S 
	Total_hous_S 

	3 
	3 

	-0.002175 
	-0.002175 

	0.000682 
	0.000682 

	-3.19 
	-3.19 

	0.0014 
	0.0014 


	Total_hous 
	Total_hous 
	Total_hous 

	4 
	4 

	0.004110 
	0.004110 

	0.001235 
	0.001235 

	3.33 
	3.33 

	0.0009 
	0.0009 


	Total_hous 
	Total_hous 
	Total_hous 

	5 
	5 

	0.005762 
	0.005762 

	0.000981 
	0.000981 

	5.87 
	5.87 

	<.0001 
	<.0001 


	Slope 
	Slope 
	Slope 

	4 
	4 

	-0.0799 
	-0.0799 

	0.0216 
	0.0216 

	-3.70 
	-3.70 

	0.0002 
	0.0002 




	 
	Compared to the MNL developed for the cycling behavior during AM peak hours, the explanatory variables that remain to have significant impacts on the bicycle counts during PM peak hours include speed limit, median household income, and total households. In addition, different from the impact factors for cycling behavior during AM peak hours, total population, median age, and slope are found to affect the level of bicycle counts significantly during PM peak hours. 
	Speed limit still has a negative impact on the level of bicycle counts which is consistent with the results of cycling behavior during AM peak hours. Different link-based route choice behavior is found in terms of the impact of total population. During PM peak hours, cyclists 
	prefer to bike on roads located in the area with low population which is opposite to the results concluded from the models based on the whole dataset. The median age variable has a positive impact on the high-average level which remains the same as what was mentioned before. However, median household income has a negative impact on the average-high level of bicycle counts which indicates that cyclists prefer to bike in the area with low household income. Total households still have a positive impact on aver
	5.8 Summary 
	This chapter developed several discrete choice models including ordered logit model, partial proportional model, multinomial logit model, and mixed logit model to analyze the link-based cyclist route choice behavior. Model comparison is conducted to select the best model structure for this research study. The link-based route choice behavior of different time periods including AM peak hours and PM peak hours is analyzed based on the mixed logit model. Impact factors that are associated with different levels
	  
	  
	Chapter 6.  
	Chapter 6.  
	Methods for Analyzing Path
	-
	based Cyclist Route Choice
	 

	6.1 Introduction 
	This Chapter provides a method to analyze the path-based cyclist route choice. The labeling method is selected for the choice set generation procedure which is the preparation of cyclist route choice analysis. The structure of Path Size Logit model is presented as a guidance for modeling path-based route choice behavior. The rest of this Chapter is organized as follows. Section 6.2 explains the choice set generation method. Section 6.3 introduces the Path Size Logit model. Finally, Section 6.4 concludes the
	6.2 Choice Set Generation 
	There are several choice set generation methods that have been utilized as the preparation for the cyclist route choice analysis. One of the most prevalent methods is the labeled route method. It can be conducted in the ArcGIS 10.4 by the Network Analyst extension. The alternative routes from the selected origin to the destination are generated based on the maximum or minimum values of certain attributes. For the unique OD pair, the alternatives are comprised of the created nonchosen alternatives and the ro
	In this study, the alternative routes for the pair of origin and destination are generated following the criteria listed below: 
	1. Minimize the distance of the cycling route from origin to the destination; 
	1. Minimize the distance of the cycling route from origin to the destination; 
	1. Minimize the distance of the cycling route from origin to the destination; 

	2. Maximize the usage of bicycle facilities along the cycling route from origin to the destination; 
	2. Maximize the usage of bicycle facilities along the cycling route from origin to the destination; 

	3. Minimize the number of intersections for the cycling route from origin to the destination; 
	3. Minimize the number of intersections for the cycling route from origin to the destination; 

	4. Minimize the proportion of one-way road segments along the cycling route from origin to the destination; 
	4. Minimize the proportion of one-way road segments along the cycling route from origin to the destination; 


	An example of the generation method for shortest cycling path from origin to destination is presented in the following figure.  
	 
	Figure
	Figure 6.1: An Example of Choice Set Generation Procedure 
	 
	6.3 Path Size Logit Model 
	To estimate models based on the generated route alternatives, some types of the discrete choice models can be utilized. The basic model for analyzing the path-based route choice behavior of cyclists is the multinomial logit model mentioned in the previous section. A classical conditional maximum likelihood estimation method can be used for developing the MNL model.  
	In this path-based route choice research study, the probability of a cyclist choosing the alternative route i from the available alternative routes in choice set Cn is presented as follows: 
	𝑃(𝑖|𝐶𝑛)=exp (𝑉𝑖𝑛)∑exp (𝑉𝑗𝑛)𝑗∈𝐶𝑛                                                Eq. (13) 
	where i denotes the chosen alternative route, j represents the alternative routes in choice set Cn, Vin/Vjn are the deterministic utility of alternative route i/j for individual n. 
	However, the limitation of MNL model is revealed in terms of the independence of irrelevant alternatives (IIA) property. In this situation, the provided alternative routes in the choice set are required to be mutually exclusive. In other words, overlapping routes are not allowed to exist while using MNL model to estimate the route choice. Neglecting this IIA property will end with overestimating the overlapping routes. 
	To release this restriction, an appropriate correction should be introduced for the utilities of alternative routes to account for the correlation. A path size (PS) factor that corrects the utilities can reflect the correlation among all routes. The PS factor is presented in the following equation:  
	𝑃𝑆𝑖𝑛=∑𝐿𝑎𝐿𝑖1∑(𝐿𝑖𝐿𝑗)𝛾𝛿𝑎𝑗𝑗∈𝐶𝑛𝑎∈𝑇𝑖                                          Eq. (14) 
	where La denotes the length of link a, Li represents the length of route i, Ti demonstrates the set of links in route i, 𝛿𝑎𝑗 equals one if link a is used in route j, otherwise, 𝛿𝑎𝑗 equals zero, γ indicates the long-path correction factor. For most cycling cases, this factor is assumed to be zero. 
	The PS attribute is included in the deterministic utility of the route alternatives and then the Path Size Logit (PSL) model is developed. Thus, the probability of alternative route i selected by a cyclist from the choice set Cn is presented in the following equation:  
	𝑃(𝑖|𝐶𝑛)=exp (𝑉𝑖𝑛+ln (𝑃𝑆𝑖𝑛))∑exp (𝑉𝑗𝑛+ln (𝑃𝑆𝑖𝑛))𝑗∈𝐶𝑛                                       Eq. (15) 
	From the PSL model, it can be seen that the utility of each alternative route is changed. The new form of the utility function of each route is presented as follow: 
	𝑈𝑖=𝛽𝑋𝑖+𝛽𝑃𝑆×ln (𝑃𝑆)                                           Eq. (13) 
	where Xi is the vector of attribute variables of route i, and β is the coefficients that need to be estimated. 
	Because the limitation of the Strava data, the exact cycling trajectory information cannot be obtained for this path-based route choice analysis. Only aggregated data and the moving direction within designed polygons can be extracted. Therefore, for further study on the path-based route choice, cycling trajectories are essential for model development and research analysis.  
	6.4 Summary 
	This chapter provides the methods for analyzing cyclists’ path-based route choice behavior. The labeled route method is selected to demonstrate the choice set generation procedure for this research study. An example of choice set generation conducted in ArcGIS 10.4 is presented. Based on the generated choice set, the PS factor is introduced in the MNL model for the correction, and a PSL model structure is presented to give a guidance for the route choice behavior analysis.  
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	7.1 Introduction 
	Cycling has gained more attention from the citizens and planners recently, since it can provide benefits not only for the society but also for the environment. By promoting cycling especially for short-distance trips, Charlotte has been making every effort to become a bike-friendly city. As an ideal travel mode, cycling is able to improve public health, reduce energy consumption, and alleviate air pollution, etc.  
	To increase the mode share of cycling, research studies are needed to conduct in order to explore the impacts on both link-based and path-based route choice behavior. One of the most critical issues that need to be considered for the route choice analysis is the data collection method. Traditional data collection methods including travel surveys and data from manual count machines can be time-consuming and expensive. The novel crowdsourced data address the issues brought by traditional data collection metho
	Based on the crowdsourced bicycle data collected from the Strava application, this research study is conducted to analyze the link-based cyclist route choice behavior in the City of Charlotte and to present a method for the future investigation on path-based route choice behavior.  
	The primary objective of this research study is to model the link-based route choice behavior for the cyclists in the City of Charlotte. Different discrete choice models are developed including ORL model, PPO model, MNL model, and MXL model. A model comparison is conducted to identify the best model structure for this research study. MXL model and MNL model are utilized to compare the cycling behavior for different time periods. The impact of explanatory variables in terms of temporal variables, road charac
	The rest of this chapter is organized as follows. Section 7.2 provides a brief review of the methods used to analyze the link-based route choice behavior for the cyclists in the City of Charlotte. The model estimation results are concluded in this section, and the model comparison result indicating the best model structure for this research study is summarized. Different link-based route choice behavior for cycling during both AM and PM hours are identified. Section 7.3 discusses the limitation of this rese
	7.2 Summary and Conclusions 
	As mentioned before, a comprehensive literature review regarding the concept of crowdsourcing, the introduction of crowdsourced bicycle data, and the use of crowdsourced data for different aspects of research studies including both link-based and path-based route choice behavior analysis, etc. is conducted to understand the usage of crowdsourced bicycle data and the modeling methods for route choice in previous research studies.  
	Based on the crowdsourced data collected from Strava, the descriptive analyses are conducted in terms of the demographic information on Strava users, cycling activities for different trip purposes, the cyclist counts on each road segment in the City of Charlotte for each month of year, weekdays/weekends, and time of day, the origin and destination of cycling trips for the most popular one, and the total cyclist counts in each origin/destination polygon for different trip purposes, and on weekdays and weeken
	Several discrete choice models are developed to analyze the link-based cyclist route choice behavior in the City of Charlotte. Models including ORL model, PPO model, MNL model, and MXL model are compared to identify the best fit for this Strava dataset. According to the model estimation results, variables including weekday, total family, slope, signed bike lanes, suggested bike routes with low comfort, interstate route, and NC route are found to have a negative impact on the level of bicycle counts, while o
	7.3 Directions for Future Research 
	This section summarizes the limitation of this research study and provides the directions for the future research study. The limitations of this research study are listed as follows: 
	1. Strava data limitations: 
	1. Strava data limitations: 
	1. Strava data limitations: 


	(1) The crowdsourced bicycle data collected from Strava only contain a large portion of the cyclists in the City of Charlotte. The models developed based on this dataset only reveal the cycling behavior of the Strava users in the City of Charlotte. The factors affecting link-based route choice may vary with different sources of data.  
	(1) The crowdsourced bicycle data collected from Strava only contain a large portion of the cyclists in the City of Charlotte. The models developed based on this dataset only reveal the cycling behavior of the Strava users in the City of Charlotte. The factors affecting link-based route choice may vary with different sources of data.  
	(1) The crowdsourced bicycle data collected from Strava only contain a large portion of the cyclists in the City of Charlotte. The models developed based on this dataset only reveal the cycling behavior of the Strava users in the City of Charlotte. The factors affecting link-based route choice may vary with different sources of data.  

	(2) Most of the cyclists using Strava application are male cyclists accounting for 80.49% of the total Strava users in the City of Charlotte which may lead to an unavoidable bias to the route choice analysis.  
	(2) Most of the cyclists using Strava application are male cyclists accounting for 80.49% of the total Strava users in the City of Charlotte which may lead to an unavoidable bias to the route choice analysis.  

	(3) The majority of the cycling trips generated by Strava users are non-commute trips which may be different from the cycling behavior for commute trips. 
	(3) The majority of the cycling trips generated by Strava users are non-commute trips which may be different from the cycling behavior for commute trips. 

	(4) The Strava data are aggregated before providing for research studies. No actual cycling trajectory information can be obtained for path-based route choice analysis.  
	(4) The Strava data are aggregated before providing for research studies. No actual cycling trajectory information can be obtained for path-based route choice analysis.  

	2. Link-based route choice models: 
	2. Link-based route choice models: 

	(1) Some variables may have a potential impact on the link-based route choice behavior, such as traffic volumes. However, the traffic volume data are not available for this case study.  
	(1) Some variables may have a potential impact on the link-based route choice behavior, such as traffic volumes. However, the traffic volume data are not available for this case study.  

	(2) Some supporting data (e.g., roadway characteristics data) are not available for certain roadway segments, and thus the records with blank information are removed from the dataset.  
	(2) Some supporting data (e.g., roadway characteristics data) are not available for certain roadway segments, and thus the records with blank information are removed from the dataset.  


	Based on the summarized limitations of this research study and the literature review on relevant topics, the directions for future studies are provided as follows: 
	1. Other models besides ORL, PPO, MNL, and MXL models should be developed and tested to see the fitness for the link-based route choice. And a more comprehensive model comparison can be conducted based on the new models.  
	1. Other models besides ORL, PPO, MNL, and MXL models should be developed and tested to see the fitness for the link-based route choice. And a more comprehensive model comparison can be conducted based on the new models.  
	1. Other models besides ORL, PPO, MNL, and MXL models should be developed and tested to see the fitness for the link-based route choice. And a more comprehensive model comparison can be conducted based on the new models.  

	2. The differences between commute trips and non-commute trips should be identified by modeling route choice models separately.  
	2. The differences between commute trips and non-commute trips should be identified by modeling route choice models separately.  

	3. The cycling activities occurred in various locations can be different. Comparison can be conducted for route choice behavior for different locations (e.g., urban or rural areas).  
	3. The cycling activities occurred in various locations can be different. Comparison can be conducted for route choice behavior for different locations (e.g., urban or rural areas).  

	4. Crash frequency or severity can be considered to examine their impacts on the cyclists’ route choice behavior. In addition, cyclist injury risk factors can be computed for the safety analysis. 
	4. Crash frequency or severity can be considered to examine their impacts on the cyclists’ route choice behavior. In addition, cyclist injury risk factors can be computed for the safety analysis. 

	5. Other choice set generation methods can be utilized to compare with the labeled route method for the path-based route choice analysis.  
	5. Other choice set generation methods can be utilized to compare with the labeled route method for the path-based route choice analysis.  


	6. Cycling trajectory data should be collected to complete the path-based route choice analysis. Other models (e.g., expanded path size logit model) should be used and compared with the PSL model.  
	6. Cycling trajectory data should be collected to complete the path-based route choice analysis. Other models (e.g., expanded path size logit model) should be used and compared with the PSL model.  
	6. Cycling trajectory data should be collected to complete the path-based route choice analysis. Other models (e.g., expanded path size logit model) should be used and compared with the PSL model.  
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